Non-crosslinked systems modulate the gel behavior and structural properties of chitosan/silica composite aerogels

The aim of this study was to achieve rapid gelation of chitosan (CS) and silica (SA) without crosslinking agent, the relationship between process parameters and the composite aerogels properties were also explored. By varying the composition ratio of the system (from SA:CS = 1:1 to 5:1), the system...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 264; p. 130630
Main Authors Huang, Wenzhang, Zhang, Xin, Yu, Zhen, Sun, Chenxi, Shan, Tikun, Zhang, Zhenxiu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study was to achieve rapid gelation of chitosan (CS) and silica (SA) without crosslinking agent, the relationship between process parameters and the composite aerogels properties were also explored. By varying the composition ratio of the system (from SA:CS = 1:1 to 5:1), the system gelation time was reduced by >12 times, and the drying shrinkage of the composite aerogel reached a minimum of 7.6 %. During the two recombination processes, chitosan rapidly formed aqueous colloid secondary structure under the influence of ethanol. This phenomenon reduced the stability of the system and allowed silica to form a two-phase composite hydrogel. Because the network gap between the fibers was used as a limiting medium for gel growth. In addition, the chitosan/silica composite aerogels exhibited a mesoporous structure with low density (0.1144 g/cm3), and the thermal conductivity was 0.028 W/(m·K) at 30 °C. The trimethylchlorosilane made the composite aerogel have good hydrophobicity with water contact angle as 134.7°, and the adsorption capacity of carbon tetrachloride could reach >10 times of its own weight. This study provides an eco-friendly and high-efficiency method for preparing aerogels, which has potential applications in the fields of thermal insulation, oil-water separation, etc. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.130630