Biomimetic three-layer hierarchical scaffolds for efficient water management and cell recruitment
Taking inspiration from the structures of roots, stems and leaves of trees in nature, a biomimetic three-layered scaffold was designed for efficient water management and cell recruitment. Using polycaprolactone (PCL) and polyacrylonitrile (PAN) as raw materials, radially oriented nanofiber films and...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 222; p. 113081 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Taking inspiration from the structures of roots, stems and leaves of trees in nature, a biomimetic three-layered scaffold was designed for efficient water management and cell recruitment. Using polycaprolactone (PCL) and polyacrylonitrile (PAN) as raw materials, radially oriented nanofiber films and multistage adjustable nanofiber films were prepared through electrospinning technology as the base skin-friendly layer (roots) and middle unidirectional moisture conductive material (stems), the porous polyurethane foam was integrated as the outer moisturizing layer (leaves). Among which, radially oriented nanofiber films could promote the directional migration of fibroblasts and induce cell morphological changes. For the spatially hierarchically nanofiber films, the unidirectional transport of liquid was effectively realized. While the porous polyurethane foam membrane could absorb 9 times its weight in biofluid and retain moisture for up to 10 h. As a result, the biomimetic three-layered scaffolds with different structures can promote wound epithelization and drain biofluid while avoiding wound inflammation caused by excessive biofluid, which is expected to be applied in the field of skin wounds.
[Display omitted]
●Biomimetic three-layer scaffolds are composed of electrospun film and polyurethane film.●Radially oriented nanofiber film can affect the behavior of L929 cells.●Multistage structure nanofiber film has unidirectional water-transport capacity.●Porous polyurethane foam film has superior water absorption and water retention. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2022.113081 |