Reactive Planning and Control of Planar Spring-Mass Running on Rough Terrain

An important motivation for work on legged robots has always been their potential for high-performance locomotion on rough terrain. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments or rely on kinematic planning at low speeds. Moreo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 28; no. 3; pp. 567 - 579
Main Authors Arslan, Ömür, Saranli, U.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An important motivation for work on legged robots has always been their potential for high-performance locomotion on rough terrain. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments or rely on kinematic planning at low speeds. Moreover, the traditional separation of planning from control often has negative impact on the robustness of the system. In this paper, we introduce a new method for dynamic, fully reactive footstep planning for a planar spring-mass hopper, based on a careful characterization of the model dynamics and the design of an associated deadbeat controller, used within a sequential composition framework. This yields a purely reactive controller with a large domain of attraction that requires no explicit replanning during execution. We show in simulation that plans constructed for a simplified dynamic model can successfully control locomotion of a more complete model across rough terrain. We also characterize the performance of the planner over rough terrain and show that it is robust against both model uncertainty and measurement noise without replanning.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2011.2178134