The inefficacy of donepezil on glycated-AChE inhibition: Binding affinity, complex stability and mechanism
Donepezil (DPZ) is a well-known drug for Alzheimer's disease that inhibits acetylcholinesterase activity (AChE). In the present study, the inhibitory effect of DPZ on non-enzymatic glycated-AChE (GLY-AChE) was studied by different experimental and simulation techniques. The initial investigatio...
Saved in:
Published in | International journal of biological macromolecules Vol. 160; pp. 35 - 46 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Donepezil (DPZ) is a well-known drug for Alzheimer's disease that inhibits acetylcholinesterase activity (AChE). In the present study, the inhibitory effect of DPZ on non-enzymatic glycated-AChE (GLY-AChE) was studied by different experimental and simulation techniques. The initial investigation revealed that glycation process could reduce AChE activity approximately 60% in the pure enzyme and 38% in the extracted crude AChE from neural cells cultured in the presence of high glucose (HG) concentration. It is suggested that glycation of lysine residues on the structure of AChE could change the conformation of the active site (Trp-86 and His-447) in a way that the orientation of acetylcholine interrupted. The further studies indicated that DPZ is although a strong inhibitor for the native enzyme, it is not able to affect the GLY-AChE activity. The KD values of AChE-DPZ and GLY-AChE-DPZ complexes were estimated to be 1.88 × 10−9 and 2.10 × 10−6, respectively. The stability assessment showed that AChE-DPZ complex is more stable than the glycated complex. Our results indicate that, glycation process could impact on the conformation of the residues involved in the DPZ binding cavity on α-helix domain. Therefore, DPZ is not able to bind its specific cavity to induce its inhibitory effects on GLY-AChE. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2020.05.177 |