Carboxymethyl potato starch hydrogels encapsulated cyclodextrin metal-organic frameworks for enantioselective loading of S-naproxen and its programmed release
A natural polysaccharide-based vehicle is facilely prepared for enantioselective loading of S-naproxen (S-NPX) and its programmed release. Cyclodextrin metal-organic frameworks (CD-MOF) are synthesized through the coordination of K+ with γ-cyclodextrin (γ-CD). Compared with R-NPX, the CD-MOF prefera...
Saved in:
Published in | International journal of biological macromolecules Vol. 262; no. Pt 1; p. 130013 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A natural polysaccharide-based vehicle is facilely prepared for enantioselective loading of S-naproxen (S-NPX) and its programmed release. Cyclodextrin metal-organic frameworks (CD-MOF) are synthesized through the coordination of K+ with γ-cyclodextrin (γ-CD). Compared with R-NPX, the CD-MOF preferably combines with S-NPX, which can be confirmed by the thermodynamic calculations. The S-NPX loaded CD-MOF (CD-MOF-S-NPX) is grafted with disulfide bond (–S–S–) to improve its hydrophobicity, and the loaded S-NPX is further encapsulated in the chiral cavity of γ-CD by carboxymethyl potato starch (CPS) hydrogels. The intermolecular hydrogen bonding of the CPS hydrogels is prone to be destroyed in mildly basic media (∼pH 8.0), resulting in the swelling of the hydrogels; the –S–S– linkage in the vehicle can be cleaved in the presence of glutathione (GSH), leading to the collapse of the CD-MOF. Therefore, the programmed release of S-NPX can be achieved. Also in this work, the release kinetics is investigated, and the results indicate that the release of S-NPX is controlled by the Higuchi model.
•A γ-CD-based vehicle is facilely prepared for chiral separation of the NPX isomers.•The CD-MOF-S-NPX is grafted with –S–S– bond to improve the hydrophobicity.•The loaded S-NPX is further encapsulated by the CPS hydrogels.•Programmed release of S-NPX from the SS-CD-MOF-S-NPX-gel is achieved.•Release kinetics reveals that the release of S-NPX is controlled by Higuchi model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.130013 |