A green intermodal service network design problem with travel time uncertainty

•A green intermodal service design problem with travel time uncertainty is introduced.•A stochastic mathematical formulation using sample average approximation is developed.•A real-life case study along with extensive computational study is presented. In a more and more competitive and global world,...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part B: methodological Vol. 93; pp. 789 - 807
Main Authors Demir, Emrah, Burgholzer, Wolfgang, Hrušovský, Martin, Arıkan, Emel, Jammernegg, Werner, Woensel, Tom Van
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2016
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•A green intermodal service design problem with travel time uncertainty is introduced.•A stochastic mathematical formulation using sample average approximation is developed.•A real-life case study along with extensive computational study is presented. In a more and more competitive and global world, freight transports have to overcome increasingly long distances while at the same time becoming more reliable. In addition, a raising awareness of the need for environmentally friendly solutions increases the importance of transportation modes other than road. Intermodal transportation, in that regard, allows for the combination of different modes in order to exploit their individual advantages. Intermodal transportation networks offer flexible, robust and environmentally friendly alternatives to transport high volumes of goods over long distances. In order to reflect these advantages, it is the challenge to develop models which both represent multiple modes and their characteristics (e.g., fixed-time schedules and routes) as well as the transhipment between these transportation modes. In this paper, we introduce a Green Intermodal Service Network Design Problem with Travel Time Uncertainty (GISND-TTU) for combined offline intermodal routing decisions of multiple commodities. The proposed stochastic approach allows for the generation of robust transportation plans according to different objectives (i.e., cost, time and greenhouse gas (GHG) emissions) by considering uncertainties in travel times as well as demands with the help of the sample average approximation method. The proposed methodology is applied to a real-world network, which shows the advantages of stochasticity in achieving robust transportation plans.
ISSN:0191-2615
1879-2367
DOI:10.1016/j.trb.2015.09.007