A location-invariant probability weighted moment estimation of the Extreme Value Index
The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of...
Saved in:
Published in | International journal of computer mathematics Vol. 93; no. 4; pp. 676 - 695 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.04.2016
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-7160 1029-0265 |
DOI: | 10.1080/00207160.2014.975217 |