Improvement of coercivity and corrosion resistance of Nd-Fe-B sintered magnets by doping aluminium nano-particles
Nd-Fe-B permanent magnets with a small amount of A1 nano-particles doping were prepared by conventional sintered method. Effect of AI content on magnetic property, corrosion resistance and oxidation properties of the magnets were studied. Inves- tigation showed that the coercivity rose gradually, wh...
Saved in:
Published in | Journal of rare earths Vol. 31; no. 1; pp. 65 - 68 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-0721 2509-4963 |
DOI | 10.1016/S1002-0721(12)60236-1 |
Cover
Summary: | Nd-Fe-B permanent magnets with a small amount of A1 nano-particles doping were prepared by conventional sintered method. Effect of AI content on magnetic property, corrosion resistance and oxidation properties of the magnets were studied. Inves- tigation showed that the coercivity rose gradually, while the remanence decreased simultaneously with increase of A1 doping amount. Further investigation revealed that most A1 element diffused into the main phase and some A1 element diffused into the Nd-rich phase The autoclave test results showed that the corrosion rate of the magnets decreased with A1 content increasing. After oxidation, the maximum energy product losses of the magnets with 0.0 wt.% and 0.2 wt.% AI nano-particles doping were 6.13% and 3.99%, respec- tively. Therefore, A1 nano-particles doping was a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnet. |
---|---|
Bibliography: | Nd-Fe-B; coercivity; corrosion resistance; A1 imno-particles; rare earths 11-2788/TF Nd-Fe-B permanent magnets with a small amount of A1 nano-particles doping were prepared by conventional sintered method. Effect of AI content on magnetic property, corrosion resistance and oxidation properties of the magnets were studied. Inves- tigation showed that the coercivity rose gradually, while the remanence decreased simultaneously with increase of A1 doping amount. Further investigation revealed that most A1 element diffused into the main phase and some A1 element diffused into the Nd-rich phase The autoclave test results showed that the corrosion rate of the magnets decreased with A1 content increasing. After oxidation, the maximum energy product losses of the magnets with 0.0 wt.% and 0.2 wt.% AI nano-particles doping were 6.13% and 3.99%, respec- tively. Therefore, A1 nano-particles doping was a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnet. LIU Weiqiang, SUN Chao , YUE Ming , SUN Hao , ZHANG Dongtao , ZHANG Jiuxing YI Xiaofei, CHEN Jingwu ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(12)60236-1 |