Cellular mechanisms of serotonin 5-HT2A receptor-mediated cGMP formation: the essential role of glutamate
The current study explores the mechanisms by which activation of serotonin(2A) (5-HT(2A)) receptors increase production of cyclic guanosine monophosphate (cGMP) in slices of rat frontal cortex. Contrary to results in cortical slices, stimulation of 5-HT(2A) receptors in cells stably expressing this...
Saved in:
Published in | Brain research Vol. 1003; no. 1-2; pp. 168 - 175 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier
02.04.2004
Amsterdam New York, NY |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The current study explores the mechanisms by which activation of serotonin(2A) (5-HT(2A)) receptors increase production of cyclic guanosine monophosphate (cGMP) in slices of rat frontal cortex. Contrary to results in cortical slices, stimulation of 5-HT(2A) receptors in cells stably expressing this serotonin receptor did not alter cGMP levels. In cortical slices, stimulation of cGMP formation by 2,5-dimethoxy-4-methylamphetamine (DOM), a 5-HT(2A/2C) receptor agonist, was blocked by tetanus toxin, a substance that prevents vesicular neurotransmitter release. However, this stimulation was not altered by tetrodotoxin, an agent that inhibits depolarization-induced neurotransmitter release. Addition of an N-methyl-d-aspartate (NMDA) receptor antagonist, d-AP-7, but not of an AMPA/kainate receptor antagonist CNQX, completely inhibited DOM-mediated cGMP production in the slices. Combined application of maximally effective concentrations of NMDA and DOM elicited a greater increase in cGMP content than either drug alone. The present study shows that 5-HT(2A) receptors do not directly stimulate cGMP formation, but rather that 5-HT(2A) receptor-mediated cGMP production is dependent on extracellular glutamate activating NMDA receptors. The results indicate that 5-HT(2A) receptor-mediated cGMP production could be at least partially attributed to potentiation of NMDA receptor-mediated cGMP formation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2004.01.014 |