Simultaneous Removal of Thiophene and Dibenzothiophene by Immobilized Pseudomonas delafieldii R-8 cells
Biodesulfurization (BDS) is a promising technology for deep desulfurization. In this work, Pseudomonas delafieldii R-8 cells are immobilized in calcium alginate beads and used for BDS of transportation fuels. It is found that thiophene and dibenzothiophene (DBT) can be simultaneously metabolized by...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 20; no. 1; pp. 47 - 51 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1004-9541 2210-321X |
DOI | 10.1016/S1004-9541(12)60362-0 |
Cover
Summary: | Biodesulfurization (BDS) is a promising technology for deep desulfurization. In this work, Pseudomonas delafieldii R-8 cells are immobilized in calcium alginate beads and used for BDS of transportation fuels. It is found that thiophene and dibenzothiophene (DBT) can be simultaneously metabolized by immobilized R-8 cells. The initial sulfur content in the model oil is 300 mg·kg-1 (thiophene " DI3T= 1 " 1). After 10 h of treatment, the thiophene concentration is reduced by 40%, while DBT is reduced by 25%. The utilization rate of thiophene is faster than that of DBT. Moreover, the oil/water ratio of alginate immobilized cells is studied to reduce the water volume in desulfurization systems. Long-term recycling of BDS by alginate immobilized cells is carried out with oil/water ratio at 5 : 1. The immobilized cells are successfully reused over 15 batch cycles. In the last batch, the desulfurization activity remains at least 75% of the first batch. |
---|---|
Bibliography: | biodesulfurization, simultaneous removal, alginate immobilization, long-term recycling Biodesulfurization (BDS) is a promising technology for deep desulfurization. In this work, Pseudomonas delafieldii R-8 cells are immobilized in calcium alginate beads and used for BDS of transportation fuels. It is found that thiophene and dibenzothiophene (DBT) can be simultaneously metabolized by immobilized R-8 cells. The initial sulfur content in the model oil is 300 mg·kg-1 (thiophene " DI3T= 1 " 1). After 10 h of treatment, the thiophene concentration is reduced by 40%, while DBT is reduced by 25%. The utilization rate of thiophene is faster than that of DBT. Moreover, the oil/water ratio of alginate immobilized cells is studied to reduce the water volume in desulfurization systems. Long-term recycling of BDS by alginate immobilized cells is carried out with oil/water ratio at 5 : 1. The immobilized cells are successfully reused over 15 batch cycles. In the last batch, the desulfurization activity remains at least 75% of the first batch. TANG Huang , LI Qiang , WANG Zelong YAN Daojiang XING Jianmin 1 National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China 11-3270/TQ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/S1004-9541(12)60362-0 |