Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is...

Full description

Saved in:
Bibliographic Details
Published inOptics communications Vol. 284; no. 1; pp. 405 - 410
Main Authors Kim, Kwang-Ryul, Jeong, Han-Wook, Lee, Kong-Soo, Yi, Junsin, Yoo, Jae-Chern, Cho, Myung-Woo, Cho, Sung-Hak, Choi, Byoungdeog
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0030-4018
1873-0310
DOI:10.1016/j.optcom.2010.08.074