Carbon nanosphere based bifunctional oxidoreductase nano-catalytic agent to mitigate hypoxia in cancer cells

Developing metal-free carbon nanozyme for tumor hypoxia is difficult. In biomedical applications, especially in the case of biomolecular detection, extensive research has been done on nanozymes with enzyme-mimicking catalytic activity. However, there are considerably fewer investigations on targeted...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 233; p. 123466
Main Authors Shukla, Ashish K., Randhawa, Shiwani, Saini, Trilok Chand, Acharya, Amitabha
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Developing metal-free carbon nanozyme for tumor hypoxia is difficult. In biomedical applications, especially in the case of biomolecular detection, extensive research has been done on nanozymes with enzyme-mimicking catalytic activity. However, there are considerably fewer investigations on targeted nano-catalytic tumor therapy. Nano catalytic medicine-enabled chemotherapy is a safe and promising treatment strategy that involves the conversion of excess H2O2 into O2 in a tumor environment. Here we have synthesized carbon nanosphere (CNS) using the Camellia sinensis plant (CS-CNS). Further surface functionalization was achieved via nitrilotriacetic acid conjugation (NTA@CS-CNS). A stability study of synthesized nanozyme in the presence of various cations, anions, and 5 different pH range suggested the robustness of carbon based nanoassembly. The catalytic in vitro study shows that NTA@CS-CNS mimics peroxidase and catalase using TMB and H2O2 as substrates. NTA@CS-CNS showed Km and Vmax values of ~ 193.2 μM and 0.43 μM/s, ~ 413 μM and 1.42 μM/s, and ~ 378 μM and 1.63 μM/s, respectively when H2O2 and TMB was used for CAT and POD activity. Results showed that NTA@CS-CNS in combination with SFN and laser irradiation reduces hypoxia. Hence, our study could pave the path for the development of different non-toxic nano catalytic therapy for tumors in cancerous cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.123466