Phytic acid-modified carboxymethyl cellulose hydrogel for uranium adsorption from aqueous solutions

Phytic acid-modified carboxymethyl cellulose (CMC-PA) has been investigated as a promising adsorbent for the removal of uranium from aqueous solutions. The synthesis of CMC-PA involves the hydrogen bonding interaction between CMC and PA, resulting in the incorporation of PA groups onto the cellulose...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 256; no. Pt 2; p. 128545
Main Authors Peng, Qihang, Jin, Tianxiang, Wang, Chongshi, Qian, Yong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phytic acid-modified carboxymethyl cellulose (CMC-PA) has been investigated as a promising adsorbent for the removal of uranium from aqueous solutions. The synthesis of CMC-PA involves the hydrogen bonding interaction between CMC and PA, resulting in the incorporation of PA groups onto the cellulose backbone. The hydrophilicity, reusability and adsorption capacity of the prepared CMC-PA hydrogel have improved with the increase of PA content. Moreover, the adsorption experiments were conducted by varying parameters such as pH, initial uranium concentration, and contact time. The results showed that CMC-PA exhibited excellent uranium adsorption performance, with a theoretical maximum adsorption capacity of 436 mg/g. In addition, the material exhibits excellent reusability, and the reusability improves with the increase of crosslinking density, indicating that the crosslinking structure of the polymer gel can effectively enhance the structural stability of the material. Furthermore, CMC-PA also exhibits high selective adsorption performance towards uranium ions in the presence of various competing ions. Its high adsorption capacity, reusability, and selectivity make it a promising candidate for high-performance uranium ion adsorbents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.128545