Fabrication and Characterization of Ca-Mg-P Containing Coating on Pure Magnesium
A biodegradable Ca-P coating mainly consisting of β-tricalcium phosphate (β-TCP) was fabricated on pure magnesium via the chemical deposition in a simulated Hank’s solution. The method significantly accelerated the coating formation on magnesium. Moreover, the morphology, phase/chemical composition,...
Saved in:
Published in | Journal of materials science & technology Vol. 28; no. 7; pp. 636 - 641 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A biodegradable Ca-P coating mainly consisting of β-tricalcium phosphate (β-TCP) was fabricated on pure magnesium via the chemical deposition in a simulated Hank’s solution. The method significantly accelerated the coating formation on magnesium. Moreover, the morphology, phase/chemical composition, the coating formation mechanism as well as degradation behavior in phosphate buffered saline (PBS) solution were in- vestigated. Scanning electron microscopy (SEM) images showed that the coating had three layers and X-ray diffraction (XRD) patterns showed that the coating mainly contained Ca3(PO4)2 and (Ca,Mg)3(PO4)2. Elec- trochemical test showed that the corrosion current density (Icorr) of the coated Mg was decreased by about one order of magnitude as compared to that of pure magnesium. The immersion test indicated that the coating could obviously reduce the degradation rate. |
---|---|
Bibliography: | 21-1315/TG Magnesium;β-tricalcium phosphate (β-TCP); Biodegradation; Chemicaldeposition A biodegradable Ca-P coating mainly consisting of β-tricalcium phosphate (β-TCP) was fabricated on pure magnesium via the chemical deposition in a simulated Hank’s solution. The method significantly accelerated the coating formation on magnesium. Moreover, the morphology, phase/chemical composition, the coating formation mechanism as well as degradation behavior in phosphate buffered saline (PBS) solution were in- vestigated. Scanning electron microscopy (SEM) images showed that the coating had three layers and X-ray diffraction (XRD) patterns showed that the coating mainly contained Ca3(PO4)2 and (Ca,Mg)3(PO4)2. Elec- trochemical test showed that the corrosion current density (Icorr) of the coated Mg was decreased by about one order of magnitude as compared to that of pure magnesium. The immersion test indicated that the coating could obviously reduce the degradation rate. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1005-0302 1941-1162 |
DOI: | 10.1016/S1005-0302(12)60109-1 |