Encapsulation of tea polyphenols into high amylose corn starch composite nanofibrous film for active antimicrobial packaging
Starch-based composite nanofibrous films loaded with tea polyphenols (TP) were successfully fabricated through electrospinning high amylose corn starch (HACS) with aid of polyvinyl alcohol (PVA), referred as HACS/PVA@TP. With the addition of 15 % TP, HACS/PVA@TP nanofibrous films exhibited enhanced...
Saved in:
Published in | International journal of biological macromolecules Vol. 245; p. 125245 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Starch-based composite nanofibrous films loaded with tea polyphenols (TP) were successfully fabricated through electrospinning high amylose corn starch (HACS) with aid of polyvinyl alcohol (PVA), referred as HACS/PVA@TP. With the addition of 15 % TP, HACS/PVA@TP nanofibrous films exhibited enhanced mechanical properties and water vapor barrier capability, and their hydrogen bonding interactions were further evidenced. TP was slowly released from the nanofibrous film and followed Fickian diffusion mechanism, which achieved the controlled sustained release of TP. Interesting, HACS/PVA@TP nanofibrous films effectively improved antimicrobial activities against Staphylococcus aureus (S. aureus) and prolonged the shelf life of strawberry. HACS/PVA@TP nanofibrous films showed superior antibacterial function by by destroying cell wall and cytomembrane, and degrading existing DNA fragments, stimulating excessive intracellular reactive oxygen species (ROS) generation. Our study demonstrated that the functional electrospun Starch-based nanofibrous films with enhanced mechanical properties and superior antimicrobial activities were potential for the application in active food packaging and relative areas.
•Electrospun HACS/PVA@TP nanofibrous film was fabricated.•HACS/PVA@TP nanofibrous film exhibited enhanced mechanical properties.•HACS/PVA@TP nanofibrous film achieved the controlled sustained release of TP.•HACS/PVA@TP nanofibrous film improved antimicrobial activities against S. aureus.•HACS/PVA@TP nanofibrous film prolonged the shelf life of strawberry. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.125245 |