A high breakdown-voltage SiCN/Si heterojunction diode for high-temperature applications
Cubic crystalline p-SiCN films are deposited on n-Si[100] substrates to form SiCN/Si heterojunction diodes (HJDs) with a rapid thermal chemical vapor deposition (RTCVD) technique. The developed SiCN/Si HJDs exhibit good rectifying properties up to 200/spl deg/C. At room temperature, the reverse brea...
Saved in:
Published in | IEEE electron device letters Vol. 23; no. 3; pp. 142 - 144 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cubic crystalline p-SiCN films are deposited on n-Si[100] substrates to form SiCN/Si heterojunction diodes (HJDs) with a rapid thermal chemical vapor deposition (RTCVD) technique. The developed SiCN/Si HJDs exhibit good rectifying properties up to 200/spl deg/C. At room temperature, the reverse breakdown voltage is more than 29 V at the leakage current density of 1.2/spl times/10/sup -4/ A/cm/sup 2/. Even at 200/spl deg/C, the typical breakdown voltage of SiCN/Si HJDs is still preserved about 5 V at the leakage current density of 1.47/spl times/10/sup -4/ A/cm/sup 2/. These properties are better than the /spl beta/-SiC on Si HJDs for high temperature applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/55.988818 |