Numerical analysis of in-flight freezing droplets: Application to novel particle engineering technology
[Display omitted] •The rate of supercooling was predicted in the range from 48 to 830 °C s−1.•Droplet coalescence was predicted at 0.05 Lh−1 for 100 μm diameter droplets.•A separation distance of 23 μm preventing coalescence was maintained at 0.02 Lh−1. The freezing of a stream of free-falling monod...
Saved in:
Published in | Food and bioproducts processing Vol. 116; pp. 30 - 40 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Rugby
Elsevier B.V
01.07.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
•The rate of supercooling was predicted in the range from 48 to 830 °C s−1.•Droplet coalescence was predicted at 0.05 Lh−1 for 100 μm diameter droplets.•A separation distance of 23 μm preventing coalescence was maintained at 0.02 Lh−1.
The freezing of a stream of free-falling monodispersed droplets was simulated through the development of numerical models in this work. Prediction of the freezing time and temperature transition of a single droplet is beneficial for optimisation of novel continuous spray freeze drying (cSFD) processes. Estimations of the vertical free-falling distance of the droplets in a slip stream and predictions of the chances of droplet coalescence greatly enhance process understanding and can be leveraged to direct equipment design and process development. A design space of droplet diameters in the range from 100 μm to 400 μm and ambient temperatures from −120 °C to −40 °C was explored. The rate of supercooling within the design space was predicted to range from 48 to 830 °C s−1 depending on the ambient temperature and droplet size. A comparison of the vertical free-falling distances of solitary droplets and streams of droplets at different temperatures showed that the terminal velocity of a vertically falling stream of droplets is always in excess of the terminal velocity of a solitary droplet of the same size. A difference of 1.35 m was predicted for the free-falling distance of a 400 μm droplet compared to a stream of droplets at −42 °C. A comparison between flow rates for consecutively generated 100 μm droplets showed that droplet coalescence was predicted at 0.05 Lh−1, whilst at 0.02 Lh−1 a separation distance of 23 μm was maintained thus preventing coalescence. |
---|---|
ISSN: | 0960-3085 1744-3571 |
DOI: | 10.1016/j.fbp.2019.04.009 |