Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy

The present study was undertaken to evaluate the biosynthesis, molecular modeling and statistical optimization of xylanase production through Box-Behnken design by a mangrove associated actinobacterium Streptomyces variabilis (MAB3). Initially, the production of xylanase by the selected strain was c...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 118; no. Pt A; pp. 195 - 208
Main Authors Sanjivkumar, Muthusamy, Silambarasan, Tamilselvan, Balagurunathan, Ramasamy, Immanuel, Grasian
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study was undertaken to evaluate the biosynthesis, molecular modeling and statistical optimization of xylanase production through Box-Behnken design by a mangrove associated actinobacterium Streptomyces variabilis (MAB3). Initially, the production of xylanase by the selected strain was carried through submerged fermentation using birchwood xylan as substrate. Further the xylanase production was statistically optimized through Box-Behnken design. It showed 5.30 fold increase of xylanase production by the isolate compared to ‘one factor at a time approach’ in the presence of the basal medium containing birchwood xylan (2.0% w/v) at pH 8.2, temperature 46.5 °C, inoculum size of 2% for 68 h. The analysis of variance (ANOVA) revealed high coefficient of determination (R2 = 0.9490) for the respective responses at significant level (P < 0.0001). The xylanase was purified by different purification steps and it resulted 5.30 fold increase with the yield of 21.27% at the final step using sephadex G-75 chromatography. The molecular weight of the purified xylanase was observed as 50 kDa on 10% SDS-PAGE. The homology 3D structure of the purified xylanase protein was predicted and this protein encodes with 420 amino acid residues. The maximum activity of purified xylanase was observed at pH 8, temperature 40 °C and the production medium supplemented with 1 mM Ca2+ metal ion, 2.0% xylan and 1.5% NaCl. The kinetic parameters of the purified xylanase expressed the Km and Vmax values of 5.23 mg/ml and 152.07 μg/min/mg, respectively. Finally, the xylanolytic hydrolysis of pretreated agro-residues, especially the rice straw substituted medium yielded maximum (46.28 mg/g) level of reducing sugar and saccharification (63.18%), followed by bioethanol production (3.92 g/l) at 72 h of incubation. Based on the results, it could be confirmed that the selected isolate is a potent strain for xylanase production and also it can able to convert the pretreated agro-residues into economically important byproduct like bioethanol. •Qualitative and quantitative analysis of xylanolytic actinobacterium from mangrove sediments.•Production and statistical optimization of xylanase from S. variabilis (MAB3) using Box-Bchnken Design (BBD).•Purification and characterization of xylanase from Streptomyces variabilis (MAB3).•Molecular modeling of purified xylanase protein of S. variabilis (MAB3).•Bioconversion of agro-residues into economically important byproduct.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2018.06.063