Equilibria, Stability, and Sensitivity for the Aerial Suspended Beam Robotic System Subject to Parameter Uncertainty

This article studies how parametric uncertainties affect the cooperative manipulation of a cable-suspended beam-shaped load by means of two aerial robots not explicitly communicating with each other. In particular, this article sheds light on the impact of the uncertain knowledge of the model parame...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 39; no. 5; pp. 1 - 17
Main Authors Gabellieri, Chiara, Tognon, Marco, Sanalitro, Dario, Franchi, Antonio
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article studies how parametric uncertainties affect the cooperative manipulation of a cable-suspended beam-shaped load by means of two aerial robots not explicitly communicating with each other. In particular, this article sheds light on the impact of the uncertain knowledge of the model parameters available to an established communicationless force-based controller. First, we find the closed-loop equilibrium configurations in the presence of the aforementioned uncertainties, and then, we study their stability. Hence, we show the fundamental role played in the robustness of the load attitude control by the internal force induced in the manipulated object by nonvertical cables. Furthermore, we formally study the sensitivity of the attitude error to such parametric variations, and we provide a method to act on the load position error in the presence of uncertainties. Eventually, we validate the results through an extensive set of numerical tests in a realistic simulation environment, including underactuated aerial vehicles and sagging-prone cables, and through hardware experiments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2023.3279033