Nonlinear experimental dye-doped nematic liquid crystal optical transmission spectra estimated by neural network empirical physical formulas

In this paper, two complementary objectives related to optical transmission spectra of nematic liquid crystals (NLCs) were achieved. First, at room temperature, for both pure and dye (DR9) doped E7 NLCs, the 10–250 W halogen lamp transmission spectra (wavelength 400–1200 nm) were measured at various...

Full description

Saved in:
Bibliographic Details
Published inOptics communications Vol. 283; no. 17; pp. 3271 - 3278
Main Authors Yildiz, Nihat, San, Sait Eren, Köysal, Oğuz
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, two complementary objectives related to optical transmission spectra of nematic liquid crystals (NLCs) were achieved. First, at room temperature, for both pure and dye (DR9) doped E7 NLCs, the 10–250 W halogen lamp transmission spectra (wavelength 400–1200 nm) were measured at various bias voltages. Second, because the measured spectra were inherently highly nonlinear, it was difficult to construct explicit empirical physical formulas (EPFs) to employ as transmittance functions. To avoid this difficulty, layered feedforward neural networks (LFNNs) were used to construct explicit EPFs for these theoretically unknown nonlinear NLC transmittance functions. As we theoretically showed in a previous work, a LFNN, as an excellent nonlinear function approximator, is highly relevant to EPF construction. The LFNN-EPFs efficiently and consistently estimated both the measured and yet-to-be-measured nonlinear transmittance response values. The experimentally obtained doping ratio dependencies and applied bias voltage responses of transmittance were also confirmed by LFFN-EPFs. This clearly indicates that physical laws embedded in the physical data can be faithfully extracted by the suitable LFNNs. The extraordinary success achieved with LFNN here suggests two potential applications. First, although not attempted here, these LFNN-EPFs, by such mathematical operations as derivation, integration, minimization etc., can be used to obtain further transmittance related functions of NLCs. Second, for a given NLC response function, whose theoretical nonlinear functional form is yet unknown, a suitable experimental data based LFNN-EPF can be constructed to predict the yet-to-be-measured values.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0030-4018
1873-0310
DOI:10.1016/j.optcom.2010.04.035