Storm characterization and simulation for damage evolution models of maritime structures

This paper presents a new approach to statistically characterize and simulate the wave climate under storm conditions. The methodology includes the joint selection of the parameters that identify storm events (significant wave height threshold, minimum storm duration and minimum interarrival time be...

Full description

Saved in:
Bibliographic Details
Published inCoastal engineering (Amsterdam) Vol. 156; p. 103620
Main Authors Lira-Loarca, Andrea, Cobos, Manuel, Losada, Miguel Ángel, Baquerizo, Asunción
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a new approach to statistically characterize and simulate the wave climate under storm conditions. The methodology includes the joint selection of the parameters that identify storm events (significant wave height threshold, minimum storm duration and minimum interarrival time between consecutive storms) by means of hypothesis testing on the distribution functions of the number of storm events and the elapsing time between storms, providing an improved characterization of the parameters that define storm events. The main wave variables and their temporal dependence are characterized by non-stationary mixture distribution functions and a vector autoregressive model. This allows to adequately reproduce the random temporal evolution of storm events, crucial for the study of damage progression in maritime structures without the use of predefined geometries. The long-term time series of storm events and calm periods is obtained using copula functions which analyze the joint dependence of storm duration and interarrival time for separate climate intervals. The model is applied to hindcast data at a location of the Mediterranean sea close to the Granada coast in Spain to show its ability to reproduce wave storm conditions accounting for the time variability of the storminess. An example of application, using a large number of simulations and a damage progression model in a maritime structure, is presented. •A statistical model for long-term simulation of extreme events is developed.•The methodology allows for the rigorous selection of the parameters that define a storm event.•The model accurately reproduces the multivariate storm events and their temporal evolution.•A case study in the Mediterranean coast of Spain is presented as a validation of the methodology.
ISSN:0378-3839
1872-7379
DOI:10.1016/j.coastaleng.2019.103620