Investigating the effect of clay content and type on the mechanical performance of calcium alginate-based hybrid bio-capsules
This study aims to investigate the mechanical behavior of alginate-based simple and alginate@clay-based hybrid capsules under uniaxial compression using a Brookfield force machine. The effect of clay type and content on Young's modulus and nominal rupture stress of the capsules was investigated...
Saved in:
Published in | International journal of biological macromolecules Vol. 242; no. Pt 2; p. 125011 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study aims to investigate the mechanical behavior of alginate-based simple and alginate@clay-based hybrid capsules under uniaxial compression using a Brookfield force machine. The effect of clay type and content on Young's modulus and nominal rupture stress of the capsules was investigated and characterized using Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (ATR-FTIR). Results showed that clay content improves the mechanical properties depending on its type. Montmorillonite and laponite clays showed optimal results at 3 wt% content, with a gain of 63.2 % and 70.34 % on Young's modulus, and a gain of 92.43 % and 108.66 % on nominal rupture stress, respectively, while kaolinite clay showed optimal results at 1.5 wt% content with an increase of 77.21 % on Young's modulus and 88.34 % on nominal rupture stress. However, exceeding the optimal content led to decrease the elasticity and rigidity due to the incomplete dispersion of clay particles in the hydrogel network. The theoretical modeling using Boltzmann superposition principle revealed that the elastic modulus was in good agreement with experimental values. Overall, this research provides insights into the mechanical behavior of alginate@clay-based capsules, which could have potential applications in drug delivery systems and tissue engineering.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.125011 |