Drug delivery based on a supramolecular chemistry approach by using chitosan hydrogels

Microbial infections are a serious healthcare related problem, causing several complications and even death. That is why, the development of new drug delivery systems with prolonged effect represents an interesting research topic. This study presents the synthesis and characterization of new hydroge...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 248; p. 125800
Main Authors Ailincai, Daniela, Morariu, Simona, Rosca, Irina, Sandu, Andreea Isabela, Marin, Luminita
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microbial infections are a serious healthcare related problem, causing several complications and even death. That is why, the development of new drug delivery systems with prolonged effect represents an interesting research topic. This study presents the synthesis and characterization of new hydrogels based on chitosan and three halogenated monoaldehydes. Further, the hydrogels were used as excipients for the development of drug delivery systems (DDS) by the incorporation of fluconazole, an antifungal drug. The systems were structurally characterized by Fourier Transformed Infrared Spectroscopy and Nuclear Magnetic Resonance, both methods revealing the formation of the imine linkages between chitosan and the aldehydes. The samples presented a high degree of ordering at supramolecular level, as demonstrated by WXRD and POM and a good water-uptake, reaching a maximum of 1.6 g/g. The obtained systems were biodegradable, loosing between 38 and 49 % from their initial mass in the presence of lysozyme in 21 days. The ability to release the antifungal drug in a sustained manner for seven days, along with the high values of the inhibition zone diameter, reaching a maximum of 64 mm against Candida parapsilosis for the chlorine containing sample, recommend these systems as promising materials for bioapplications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.125800