Do we need non-linear corrections? On the boundary Forchheimer equation in acoustic scattering

This paper presents a rapid numerical method for predicting the aerodynamic noise generated by foam-like porous aerofoils. In such situations, particularly for high-frequency noise sources, Darcy’s law may be unsuitable for describing the pressure jump across the aerofoil. Therefore, an inertial For...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 495; p. 115905
Main Authors Colbrook, Matthew J., Ayton, Lorna J.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 17.03.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a rapid numerical method for predicting the aerodynamic noise generated by foam-like porous aerofoils. In such situations, particularly for high-frequency noise sources, Darcy’s law may be unsuitable for describing the pressure jump across the aerofoil. Therefore, an inertial Forchheimer correction is introduced. This results in a non-linear boundary condition relating the pressure jump across the material to the fluid displacement. We aim to provide a quick, semi-analytical model that incorporates such non-linear effects without requiring a full turbulent simulation. The numerical scheme implemented is based on local Mathieu function expansions, leading to a semi-analytical boundary spectral method that is well-suited to both linear and non-linear boundary conditions (including boundary conditions more general than the Forchheimer correction). In the latter case, Newton’s method is employed to solve the resulting non-linear system of equations for the unknown coefficients. Whilst the physical model is simplified to consider just the scattering by a thin porous aerofoil with no background flow, when the non-linear inertial correction is included good agreement is seen between the model predictions and both experimental results and large eddy simulations. It is found that for sufficiently low-permeability materials, the effects of inertia can outweigh the noise attenuation effects of viscosity. This helps explain the discrepancy between experimental results and previous (linear) low-fidelity numerical simulations or analytical predictions, which typically overestimate the noise reduction capabilities of porous aerofoils.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2020.115905