An eigenvalue problem involving a degenerate and singular elliptic operator
We study an eigenvalue problem involving a degenerate and singular elliptic operator on the whole space [R.sup.N]. We prove the existence of an unbounded and increasing sequence of eigenvalues. Our study generalizes to the case of degenerate and singular operators a result of A. Szulkin and M. Wille...
Saved in:
Published in | Bulletin of the Belgian Mathematical Society, Simon Stevin Vol. 18; no. 5; pp. 839 - 847 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Belgian Mathematical Society
01.01.2011
The Belgian Mathematical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study an eigenvalue problem involving a degenerate and singular elliptic operator on the whole space [R.sup.N]. We prove the existence of an unbounded and increasing sequence of eigenvalues. Our study generalizes to the case of degenerate and singular operators a result of A. Szulkin and M. Willem. 2000 Mathematics Subject Classification : 35J60, 35J20, 35J70. Key words and phrases : Eigenvalue problem, degenerate and singular elliptic operator, Caffarelli-Kohn-Nirenberg inequality. |
---|---|
ISSN: | 1370-1444 2034-1970 |
DOI: | 10.36045/bbms/1323787171 |