Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles

As per to silver nanoparticles/silicon dioxide nanoparticles (SiO2@AgNPs) properties (e.g., conductivity, reactant, adsorption, detachment and antimicrobial), many researchers were focused on its preparation technique. A core/shell of silicon dioxide and silver nanoparticles (SiO2@AgNPs) has been pr...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 95; pp. 429 - 437
Main Authors Mohamed, Amina L., El-Naggar, Mehrez E., Shaheen, Th. I., Hassabo, Ahmed G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As per to silver nanoparticles/silicon dioxide nanoparticles (SiO2@AgNPs) properties (e.g., conductivity, reactant, adsorption, detachment and antimicrobial), many researchers were focused on its preparation technique. A core/shell of silicon dioxide and silver nanoparticles (SiO2@AgNPs) has been prepared by facile route. The as synthesized core/shell nanoparticles were chemically modified with two different silan compounds, nominated, vinyltriethoxysilan (VTEOS) and (3-aminopropyl)trimethoxysilan (APTEOS). World class facilities such as XRD, FT-IR, TEM, Particle size, DLS, SEM techniques were utilized for the nanoparticles characterization. The nanoparticulate system comprises SiO2@AgNPs, SiO2@AgNPs/APTEOS were applied to cotton fabric using butantetracarboxylic acid (BTCA) as across-linking agent. While UV irradiation by photo initiator was used as crosslinking agent for SiO2@AgNPs/VTEOS on cotton fabrics. The Treated cotton fabrics were evaluated for their surface morphology and heat transfer ability as well as antibacterial activity. The obtained data prove that the core/shell was successfully prepared, with AgNPs in core. In addition, both silan compounds (APTEOS, VTEOS) were successfully reacted with the outer shell SiO2. The results declared also that the treated fabrics exhibit a good antibacterial activity as well as good thermal properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2016.10.082