Chitosan nanoparticles embedded with curcumin and its application in pork antioxidant edible coating

Curcumin (Cur) exhibits low water solubility and insufficient dispersibility in food systems, and cannot exert its excellent antioxidant properties. In this work, Chitosan (CS) nanoparticles were prepared by ionic crosslinking method using chitosan as carrier and sodium tripolyphosphate (TPP) as cro...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 204; pp. 410 - 418
Main Authors Shen, Wen, Yan, Mengyao, Wu, Shang, Ge, Xuemei, Liu, Shuxing, Du, Yan, Zheng, Yan, Wu, Lixin, Zhang, Yue, Mao, Yueyang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Curcumin (Cur) exhibits low water solubility and insufficient dispersibility in food systems, and cannot exert its excellent antioxidant properties. In this work, Chitosan (CS) nanoparticles were prepared by ionic crosslinking method using chitosan as carrier and sodium tripolyphosphate (TPP) as crosslinking agent, then Cur was loaded to obtain curcumin nanoparticles (CNPs). CNPs presented a spherical morphology with average size of 278.9 nm. Compared with the solubility of native Cur (0.017 μg/mL) at 25 °C, the water solubility of CNPs increased to 35.92 μg/mL of more than 2100 times. In addition, the antioxidant capacity of Cur was also studied based on DPPH free radical scavenging, the results showed that with the increase of the concentration, the antioxidant capacity of CNPs was significantly increased (p < 0.05), which was higher than that of Cur at the same concentration. The edible coating was prepared by adding CNPs into sodium carboxymethyl cellulose (CMC) to study the effects of CMC-CNPs coatings in improving the quality and shelf life of fresh pork stored at 4 ± 1 °C for 15 days. The results showed that CMC-CNPs edible coating could significantly inhibit lipid oxidation of fresh pork (p < 0.05) and could be further applied in lipid rich food packaging.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.02.025