LIPID MAPS online tools for lipid research

The LIPID MAPS consortium has developed a number of online tools for performing tasks such as drawing lipid structures and predicting possible structures from mass spectrometry (MS) data. A simple online interface has been developed to enable an end-user to rapidly generate a variety of lipid chemic...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 35; no. Web Server issue; pp. W606 - W612
Main Authors Fahy, Eoin, Sud, Manish, Cotter, Dawn, Subramaniam, Shankar
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The LIPID MAPS consortium has developed a number of online tools for performing tasks such as drawing lipid structures and predicting possible structures from mass spectrometry (MS) data. A simple online interface has been developed to enable an end-user to rapidly generate a variety of lipid chemical structures, along with corresponding systematic names and ontological information. The structure-drawing tools are available for six categories of lipids: (i) fatty acyls, (ii) glycerolipids, (iii) glycerophospholipids, (iv) cardiolipins, (v) sphingolipids and (vi) sterols. Within each category, the structure-drawing tools support the specification of various parameters such as chain lengths at a specific sn position, head groups, double bond positions and stereochemistry to generate a specific lipid structure. The structure-drawing tools have also been integrated with a second set of online tools which predict possible lipid structures from precursor-ion and product-ion MS experimental data. The MS prediction tools are available for three categories of lipids: (i) mono/di/triacylglycerols, (ii) glycerophospholipids and (iii) cardiolipins. The LIPID MAPS online tools are publicly available at www.lipidmaps.org/tools/.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkm324