A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor

[Display omitted] •The preparation of fully inkjet printed PEDOT:PSS/ZnO/Nafion sensor on commercial printing paper..•A paper based electrochemical sensor for hydrazine sensing with a good selectivity and reproducibility.•Sensitivity comparison of PEDOT:PSS/Nafion and PEDOT:PSS/ZnO/Nafion sensors.•C...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 306; p. 127539
Main Authors Beduk, Tutku, Bihar, Eloise, Surya, Sandeep G., Castillo, Aminta N., Inal, Sahika, Salama, Khaled N.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.03.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The preparation of fully inkjet printed PEDOT:PSS/ZnO/Nafion sensor on commercial printing paper..•A paper based electrochemical sensor for hydrazine sensing with a good selectivity and reproducibility.•Sensitivity comparison of PEDOT:PSS/Nafion and PEDOT:PSS/ZnO/Nafion sensors.•Characterization of PEDOT:PSS and ZnO through SEM, XPS and AFM.•Excellent detection in real samples with a recovery of 98.7–104.2 %. Hydrazine is widely used in industries as a precursor for blowing agents, pharmaceuticals, and pesticides. It is a highly toxic compound; therefore, it is of paramount interest to develop new analytical methods for the detection and control of hydrazine exposure. In this work, we describe the fabrication of an all inkjet-printed paper sensor composed of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrode functionalized with zinc oxide (ZnO) and encapsulated in a Nafion matrix for the amperometric determination of low concentrations of hydrazine. The electrochemical properties of the fully inkjet-printed PEDOT:PSS/Nafion and PEDOT:PSS/ZnO/Nafion sensors are compared in the presence and absence of different concentrations of hydrazine. The stability and sensitivity of these electrodes are significantly enhanced after modification with ZnO particles. The layer-by-layer deposition of the materials on the electrode surface is characterized by SEM, XRD, and AFM. The printed sensor exhibits a linear response in the 10–500 μM hydrazine concentration range and a ∼5 μM detection limit (at S/N = 3). The electrochemical sensitivity is 0.14 μA μM−1 cm−2, and the best working voltage is 0.5 V. The developed sensor was applied successfully for the determination of hydrazine content in tap, sea, and mineral water samples validating the accuracy of this sensor.
AbstractList Hydrazine is widely used in industries as a precursor for blowing agents, pharmaceuticals, and pesticides. It is a highly toxic compound; therefore, it is of paramount interest to develop new analytical methods for the detection and control of hydrazine exposure. In this work, we describe the fabrication of an all inkjet-printed paper sensor composed of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrode functionalized with zinc oxide (ZnO) and encapsulated in a Nafion matrix for the amperometric determination of low concentrations of hydrazine. The electrochemical properties of the fully inkjet-printed PEDOT:PSS/Nafion and PEDOT:PSS/ZnO/Nafion sensors are compared in the presence and absence of different concentrations of hydrazine. The stability and sensitivity of these electrodes are significantly enhanced after modification with ZnO particles. The layer-by-layer deposition of the materials on the electrode surface is characterized by SEM, XRD, and AFM. The printed sensor exhibits a linear response in the 10–500 μM hydrazine concentration range and a ∼5 μM detection limit (at S/N = 3). The electrochemical sensitivity is 0.14 μA μM−1 cm−2, and the best working voltage is 0.5 V. The developed sensor was applied successfully for the determination of hydrazine content in tap, sea, and mineral water samples validating the accuracy of this sensor.
[Display omitted] •The preparation of fully inkjet printed PEDOT:PSS/ZnO/Nafion sensor on commercial printing paper..•A paper based electrochemical sensor for hydrazine sensing with a good selectivity and reproducibility.•Sensitivity comparison of PEDOT:PSS/Nafion and PEDOT:PSS/ZnO/Nafion sensors.•Characterization of PEDOT:PSS and ZnO through SEM, XPS and AFM.•Excellent detection in real samples with a recovery of 98.7–104.2 %. Hydrazine is widely used in industries as a precursor for blowing agents, pharmaceuticals, and pesticides. It is a highly toxic compound; therefore, it is of paramount interest to develop new analytical methods for the detection and control of hydrazine exposure. In this work, we describe the fabrication of an all inkjet-printed paper sensor composed of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrode functionalized with zinc oxide (ZnO) and encapsulated in a Nafion matrix for the amperometric determination of low concentrations of hydrazine. The electrochemical properties of the fully inkjet-printed PEDOT:PSS/Nafion and PEDOT:PSS/ZnO/Nafion sensors are compared in the presence and absence of different concentrations of hydrazine. The stability and sensitivity of these electrodes are significantly enhanced after modification with ZnO particles. The layer-by-layer deposition of the materials on the electrode surface is characterized by SEM, XRD, and AFM. The printed sensor exhibits a linear response in the 10–500 μM hydrazine concentration range and a ∼5 μM detection limit (at S/N = 3). The electrochemical sensitivity is 0.14 μA μM−1 cm−2, and the best working voltage is 0.5 V. The developed sensor was applied successfully for the determination of hydrazine content in tap, sea, and mineral water samples validating the accuracy of this sensor.
ArticleNumber 127539
Author Bihar, Eloise
Surya, Sandeep G.
Salama, Khaled N.
Castillo, Aminta N.
Beduk, Tutku
Inal, Sahika
Author_xml – sequence: 1
  givenname: Tutku
  surname: Beduk
  fullname: Beduk, Tutku
  organization: Sensors Lab., Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 2
  givenname: Eloise
  surname: Bihar
  fullname: Bihar, Eloise
  organization: Sensors Lab., Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Sandeep G.
  orcidid: 0000-0003-3425-1265
  surname: Surya
  fullname: Surya, Sandeep G.
  organization: Sensors Lab., Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 4
  givenname: Aminta N.
  surname: Castillo
  fullname: Castillo, Aminta N.
  organization: Sensors Lab., Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 5
  givenname: Sahika
  orcidid: 0000-0002-1166-1512
  surname: Inal
  fullname: Inal, Sahika
  organization: Organic Bioelectronics Lab., Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
– sequence: 6
  givenname: Khaled N.
  orcidid: 0000-0001-7742-1282
  surname: Salama
  fullname: Salama, Khaled N.
  email: khaled.salama@kaust.edu.sa
  organization: Sensors Lab., Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
BookMark eNp9kE1Lw0AQhhepYFv9Ad4CnpPOZvO1eiq1fkChhdaLl2WzmejGuIm7qVB_vSnx5KGnYeB9ZnifCRmZxiAh1xQCCjSZVYEzeRAC5QEN05jxMzKmWcp8Bmk6ImPgYexHAPEFmThXAUDEEhiTxdxrZYvWz6XDwtPmo8LOb602Xb9ulvfr3e1mu529mrXnmtp_w9p7PxRW_miDnkPjGntJzktZO7z6m1Py8rDcLZ781frxeTFf-YolWedHLMzCECWHHDmWPCsKnqiYYZohqKjMUYZxEuUKUkgKwBQzFuUxj4pYJYqWbEpuhrutbb726DpRNXtr-pciZAnPgLIo7lN0SCnbOGexFH2bT2kPgoI4uhKV6F2JoysxuOqZ9B-jdCc73ZjOSl2fJO8GEvvi3xqtcEqjUVhoi6oTRaNP0L_hD4RD
CitedBy_id crossref_primary_10_1016_j_foodchem_2023_136648
crossref_primary_10_20473_jkr_v8i1_41110
crossref_primary_10_1080_07391102_2024_2328740
crossref_primary_10_3390_chemengineering8030053
crossref_primary_10_1016_j_jhazmat_2024_133809
crossref_primary_10_3390_s21134300
crossref_primary_10_1016_j_synthmet_2022_117100
crossref_primary_10_1016_j_colsurfa_2022_129479
crossref_primary_10_1002_admt_202000994
crossref_primary_10_1016_j_cplett_2023_140426
crossref_primary_10_1016_j_matchemphys_2022_126463
crossref_primary_10_1021_acsanm_4c04675
crossref_primary_10_20964_2021_06_23
crossref_primary_10_1016_j_cattod_2022_03_016
crossref_primary_10_1016_j_foodchem_2021_131158
crossref_primary_10_3390_s20205898
crossref_primary_10_1021_acsaelm_0c00484
crossref_primary_10_1016_j_optcom_2022_128014
crossref_primary_10_20964_2021_11_23
crossref_primary_10_1016_j_jelechem_2022_116140
crossref_primary_10_1016_j_biosx_2024_100503
crossref_primary_10_3390_cryst13020161
crossref_primary_10_1007_s11431_021_2093_4
crossref_primary_10_1016_j_mtelec_2023_100058
crossref_primary_10_1016_j_bioelechem_2020_107647
crossref_primary_10_1016_j_mssp_2022_106803
crossref_primary_10_20964_2020_07_60
crossref_primary_10_1002_mba2_57
crossref_primary_10_1016_j_molliq_2024_125707
crossref_primary_10_1038_s41528_021_00103_1
crossref_primary_10_1515_ntrev_2021_0030
crossref_primary_10_1039_D2AY01698B
crossref_primary_10_1007_s42823_020_00198_y
crossref_primary_10_1039_D0GC00658K
crossref_primary_10_1109_LSENS_2024_3505959
crossref_primary_10_1016_j_sna_2021_112638
crossref_primary_10_20964_2022_12_57
crossref_primary_10_1016_j_snb_2021_130967
crossref_primary_10_1063_10_0006866
crossref_primary_10_1016_j_mattod_2021_08_010
crossref_primary_10_1016_j_microc_2022_108317
crossref_primary_10_1021_acssuschemeng_3c02575
crossref_primary_10_1016_j_snb_2024_135633
crossref_primary_10_1021_acsanm_4c01660
crossref_primary_10_3390_chemosensors12050081
crossref_primary_10_1002_elan_202200458
crossref_primary_10_1016_j_jelechem_2021_115268
crossref_primary_10_1002_slct_202203160
crossref_primary_10_1016_j_electacta_2024_145561
crossref_primary_10_3389_felec_2020_594003
crossref_primary_10_1002_admt_202001148
crossref_primary_10_1016_j_jhazmat_2021_127303
crossref_primary_10_3390_membranes12111039
crossref_primary_10_1016_j_cej_2025_159499
crossref_primary_10_1016_j_ccr_2024_216256
crossref_primary_10_14710_jksa_24_2_43_50
crossref_primary_10_1007_s10854_020_04828_z
crossref_primary_10_1088_1361_648X_abf477
crossref_primary_10_3390_nano11010252
crossref_primary_10_1039_D0TC01947J
crossref_primary_10_1016_j_jphotochem_2023_114795
crossref_primary_10_1002_cssc_202201608
crossref_primary_10_1007_s12088_024_01372_w
crossref_primary_10_1016_j_jelechem_2022_116626
crossref_primary_10_1002_admt_202000523
crossref_primary_10_1016_j_sna_2024_115429
crossref_primary_10_1039_D1SD00006C
crossref_primary_10_1080_25740881_2024_2346331
crossref_primary_10_1016_j_trac_2021_116329
crossref_primary_10_1088_2399_1984_ad36ff
crossref_primary_10_1016_j_electacta_2022_140384
crossref_primary_10_1088_1757_899X_1266_1_012006
crossref_primary_10_3390_nano11082025
crossref_primary_10_1021_acsaelm_4c01257
crossref_primary_10_1021_acsami_3c12366
crossref_primary_10_1038_s41598_023_36612_4
crossref_primary_10_1039_D4NJ04488F
crossref_primary_10_1016_j_flatc_2022_100443
crossref_primary_10_1039_D4QM00242C
crossref_primary_10_1016_j_microc_2024_112510
crossref_primary_10_1016_j_cej_2022_140443
crossref_primary_10_3390_bios10120199
crossref_primary_10_3390_cryst10060449
Cites_doi 10.1016/j.snb.2012.06.065
10.1016/j.snb.2019.01.132
10.1038/s41528-018-0044-y
10.1088/2058-8585/aadb56
10.1016/j.jpba.2010.11.007
10.1016/0165-1110(77)90018-5
10.1016/j.jpowsour.2017.01.083
10.1038/srep27689
10.1039/C5RA05612H
10.1166/jnn.2009.1103
10.1007/s11356-014-2529-0
10.1021/acs.accounts.7b00624
10.1016/j.jallcom.2018.06.038
10.1007/BF02159613
10.1039/C5RA00884K
10.1016/j.apsusc.2015.12.165
10.1016/j.electacta.2007.04.019
10.1016/j.bios.2014.06.023
10.1016/j.scitotenv.2013.08.044
10.1016/j.ceramint.2014.10.154
10.1002/admt.201900040
10.1016/j.electacta.2009.08.036
10.1002/elan.201100163
10.1021/tx0498915
10.20964/2016.06.59
10.1016/S0925-4005(02)00170-3
10.1039/c0dt00258e
10.1039/B513751A
10.1039/b923857n
10.20964/2018.04.38
10.2116/analsci.31.1027
10.1016/j.measurement.2012.01.029
10.1007/s00604-010-0304-6
10.1007/s00604-017-2289-x
10.1002/elan.201400659
10.1016/j.mtcomm.2018.09.024
10.1007/s10008-015-2907-7
10.1039/C6RA02352E
10.1016/j.jelechem.2016.09.030
10.1002/elan.201800125
10.1039/c2ay05934g
10.1146/annurev.pa.10.040170.002143
10.1016/j.snb.2015.09.016
10.1016/j.jelechem.2015.05.032
10.1002/adhm.201601167
10.1016/j.talanta.2007.09.002
10.1039/C6AY01367H
10.1016/j.cej.2014.09.111
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 1, 2020
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2019.127539
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2019_127539
S0925400519317381
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c368t-432822ea90be9ef98dd96c53e78e0c4fbea2564bc0706d0e7e834b594d5c6c1f3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Fri Jul 25 05:56:05 EDT 2025
Tue Jul 01 01:27:38 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 23 02:48:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Point-of-care sensor
Inkjet printing
Zinc oxide
Hydrazine sensor
Sol–gel
Paper electronics
PEDOT:PSS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-432822ea90be9ef98dd96c53e78e0c4fbea2564bc0706d0e7e834b594d5c6c1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3425-1265
0000-0001-7742-1282
0000-0002-1166-1512
OpenAccessLink http://hdl.handle.net/10754/660528
PQID 2369801345
PQPubID 2047454
ParticipantIDs proquest_journals_2369801345
crossref_primary_10_1016_j_snb_2019_127539
crossref_citationtrail_10_1016_j_snb_2019_127539
elsevier_sciencedirect_doi_10_1016_j_snb_2019_127539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Tolstopjatova, Kondratiev, Eliseeva (bib0115) 2015; 19
Ni, Zhu, Zhang, Hong (bib0140) 2010; 12
Umar, Rahman, Hahn (bib0180) 2009; 9
Guo, Ma, Cao, Tong, Liu, Liu (bib0040) 2017; 184
Garrod, Bollard, Nichollst, Connor, Connelly, Nicholson (bib0025) 2005; 18
Omar, Aziz, Stoll (bib0220) 2014; 468
Tirunarayanan, Vischer (bib0015) 1956; 12
Zhai, Feng, Feng (bib0060) 2016; 8
Kimball (bib0005) 1977; 39
Wu, Zhou, Wang, Umar (bib0210) 2016; 224
Nilsson, Kugler, Svensson, Berggren (bib0110) 2002; 86
Wu, Ding, Meng, Ni, Li, Ma (bib0150) 2015; 31
Sun, Zhao, Qu (bib0195) 2012; 45
Bihar, Roberts, Saadaoui, Herve, De Graaf, Malliaras (bib0120) 2017; 6
Hu, Zhao, Sun, Wang, Li, Zhang (bib0090) 2016; 364
Bihar, Wustoni, Pappa, Salama, Baran, Inal (bib0125) 2018; 2
Amin, El-Kady, Atta, Galal (bib0230) 2018; 30
Liu, Li, Jiang, Huang (bib0185) 2010; 39
Batchelor-McAuley, Banks, Simm, Jones, Compton (bib0030) 2006; 131
Fang, Zhang, Zhang, Wang (bib0075) 2009; 55
Isa, Saruddin, Hashim, Ahmad, Ab Ghani (bib0235) 2016; 11
Hosseini, Ghasemi, Kamali-Rousta (bib0045) 2017; 343
Metters, Tan, Kadara, Banks (bib0190) 2012; 4
Umar, Akhtar, Al-Hajry, Al-Assiri, Dar, Islam (bib0145) 2015; 262
Majidi, Jouyban, Asadpour-Zeynali (bib0170) 2007; 52
Karimi-Maleh, Moazampour, Ensafi, Mallakpour, Hatami (bib0050) 2014; 21
Georgea, Nagarajaa, Balasubramanian (bib0055) 2008; 75
Khan, Ansari, Hameedullah, Ahmad, Husain, Zia (bib0135) 2016; 6
Hwa, Subramani (bib0215) 2014; 62
Ameen, Akhtar, Shin (bib0160) 2012; 173
Zhang, Xu, Wen, Wang, Zhang, Ding (bib0205) 2015; 751
Ding, Zhu, Zhu, Sun, Li, Wei (bib0095) 2015; 5
Bihar, Roberts, Zhang, Ismailova, Herve, Malliaras, De Graaf, Inal, Saadaoui (bib0240) 2018; 3
Rahman, Balkhoyor, Asiri (bib0130) 2016; 6
Ahmad, Wolfbeis, Hahn, Alshareef, Torsi, Salama (bib0070) 2018; 17
Inal, Rivnay, Suiu, Malliaras, McCulloch (bib0100) 2018; 51
Maleki, Rezaee, Daraei, Shahmoradi, Amini (bib0175) 2018; 763
Panchompoo, Aldous, Downing, Crossley, Compton (bib0200) 2011; 23
Kumar, Bhanjana, Dilbaghi, Umar (bib0080) 2015; 41
Madhu, Dinesh, Chen, Saraswathi, Mani (bib0225) 2015; 5
Ahmad, Beduk, Majhi, Salama (bib0065) 2019; 286
Elder, Snodin, Teasdale (bib0035) 2011; 54
Deng, Deng, Liu (bib0085) 2018; 13
Devasenathipathy, Palanisamy, Chen, Karuppiah, Mani, Ramaraj (bib0010) 2015; 27
Corzo, Almasabi, Bihar, MacPhee, Diego, Gasparini, Inal, Baran (bib0245) 2019
Sakkopoulos, Vitoratos (bib0105) 2014; 4
Wang, Zhang, Guo, Xu, Wang, Zhai (bib0155) 2010; 169
Rebis, Sobkowiak, Milczarek (bib0165) 2016; 780
Back, Thomas (bib0020) 1970; 10
Georgea (10.1016/j.snb.2019.127539_bib0055) 2008; 75
Kimball (10.1016/j.snb.2019.127539_bib0005) 1977; 39
Garrod (10.1016/j.snb.2019.127539_bib0025) 2005; 18
Elder (10.1016/j.snb.2019.127539_bib0035) 2011; 54
Bihar (10.1016/j.snb.2019.127539_bib0125) 2018; 2
Ameen (10.1016/j.snb.2019.127539_bib0160) 2012; 173
Rebis (10.1016/j.snb.2019.127539_bib0165) 2016; 780
Ding (10.1016/j.snb.2019.127539_bib0095) 2015; 5
Khan (10.1016/j.snb.2019.127539_bib0135) 2016; 6
Maleki (10.1016/j.snb.2019.127539_bib0175) 2018; 763
Umar (10.1016/j.snb.2019.127539_bib0180) 2009; 9
Devasenathipathy (10.1016/j.snb.2019.127539_bib0010) 2015; 27
Omar (10.1016/j.snb.2019.127539_bib0220) 2014; 468
Bihar (10.1016/j.snb.2019.127539_bib0240) 2018; 3
Guo (10.1016/j.snb.2019.127539_bib0040) 2017; 184
Panchompoo (10.1016/j.snb.2019.127539_bib0200) 2011; 23
Zhai (10.1016/j.snb.2019.127539_bib0060) 2016; 8
Inal (10.1016/j.snb.2019.127539_bib0100) 2018; 51
Amin (10.1016/j.snb.2019.127539_bib0230) 2018; 30
Isa (10.1016/j.snb.2019.127539_bib0235) 2016; 11
Sakkopoulos (10.1016/j.snb.2019.127539_bib0105) 2014; 4
Wu (10.1016/j.snb.2019.127539_bib0150) 2015; 31
Majidi (10.1016/j.snb.2019.127539_bib0170) 2007; 52
Kumar (10.1016/j.snb.2019.127539_bib0080) 2015; 41
Rahman (10.1016/j.snb.2019.127539_bib0130) 2016; 6
Wu (10.1016/j.snb.2019.127539_bib0210) 2016; 224
Tirunarayanan (10.1016/j.snb.2019.127539_bib0015) 1956; 12
Tolstopjatova (10.1016/j.snb.2019.127539_bib0115) 2015; 19
Nilsson (10.1016/j.snb.2019.127539_bib0110) 2002; 86
Liu (10.1016/j.snb.2019.127539_bib0185) 2010; 39
Karimi-Maleh (10.1016/j.snb.2019.127539_bib0050) 2014; 21
Hosseini (10.1016/j.snb.2019.127539_bib0045) 2017; 343
Wang (10.1016/j.snb.2019.127539_bib0155) 2010; 169
Ahmad (10.1016/j.snb.2019.127539_bib0065) 2019; 286
Zhang (10.1016/j.snb.2019.127539_bib0205) 2015; 751
Hu (10.1016/j.snb.2019.127539_bib0090) 2016; 364
Ahmad (10.1016/j.snb.2019.127539_bib0070) 2018; 17
Hwa (10.1016/j.snb.2019.127539_bib0215) 2014; 62
Corzo (10.1016/j.snb.2019.127539_bib0245) 2019
Back (10.1016/j.snb.2019.127539_bib0020) 1970; 10
Batchelor-McAuley (10.1016/j.snb.2019.127539_bib0030) 2006; 131
Bihar (10.1016/j.snb.2019.127539_bib0120) 2017; 6
Deng (10.1016/j.snb.2019.127539_bib0085) 2018; 13
Madhu (10.1016/j.snb.2019.127539_bib0225) 2015; 5
Metters (10.1016/j.snb.2019.127539_bib0190) 2012; 4
Umar (10.1016/j.snb.2019.127539_bib0145) 2015; 262
Fang (10.1016/j.snb.2019.127539_bib0075) 2009; 55
Ni (10.1016/j.snb.2019.127539_bib0140) 2010; 12
Sun (10.1016/j.snb.2019.127539_bib0195) 2012; 45
References_xml – volume: 12
  start-page: 2213
  year: 2010
  end-page: 2218
  ident: bib0140
  article-title: Hierarchical ZnO micro/nanoarchitectures: hydrothermal preparation, characterization and application in the detection of hydrazine
  publication-title: CrystEngComm
– volume: 9
  start-page: 4686
  year: 2009
  end-page: 4691
  ident: bib0180
  article-title: ZnO nanorods based hydrazine sensors
  publication-title: J. Nanosci. Nanotechnol.
– volume: 54
  start-page: 900
  year: 2011
  end-page: 910
  ident: bib0035
  article-title: Control and analysis of hydrazine, hydrazides and hydrazones-genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products
  publication-title: J. Pharm. Biomed. Anal.
– volume: 286
  start-page: 139
  year: 2019
  end-page: 147
  ident: bib0065
  article-title: One-step synthesis and decoration of nickel oxide nanosheets with gold nanoparticles by reduction method for hydrazine sensing application
  publication-title: Sens. Actuators B-Chem.
– volume: 30
  start-page: 1749
  year: 2018
  end-page: 1758
  ident: bib0230
  article-title: Gold nanoparticles decorated graphene as a high performance sensor for determination of trace hydrazine levels in water
  publication-title: Electroanalysis
– volume: 12
  start-page: 291
  year: 1956
  end-page: 292
  ident: bib0015
  article-title: Effect of vitamins on the acute toxicity of hydrazine derivatives
  publication-title: Experientia
– volume: 27
  start-page: 1403
  year: 2015
  end-page: 1410
  ident: bib0010
  article-title: An amperometric biological toxic hydrazine sensor based on multiwalled carbon nanotubes and iron tetrasulfonated phthalocyanine composite modified electrode
  publication-title: Electroanalysis
– volume: 3
  start-page: 34004
  year: 2018
  ident: bib0240
  article-title: Fully printed all-polymer tattoo/textile electronics for electromyography
  publication-title: Flexible and Printed Electronics
– volume: 6
  year: 2017
  ident: bib0120
  article-title: Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography
  publication-title: Adv. Healthc. Mater.
– volume: 173
  start-page: 177
  year: 2012
  end-page: 183
  ident: bib0160
  article-title: Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film
  publication-title: Sens. Actuators B-Chem.
– volume: 751
  start-page: 65
  year: 2015
  end-page: 74
  ident: bib0205
  article-title: Voltammetric determination of phytoinhibitor maleic hydrazide using PEDOT:PSS composite electrode
  publication-title: J. Electroanal. Chem.
– volume: 21
  start-page: 5879
  year: 2014
  end-page: 5888
  ident: bib0050
  article-title: An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples
  publication-title: Environ. Sci. Pollut. Res.
– volume: 169
  start-page: 1
  year: 2010
  end-page: 6
  ident: bib0155
  article-title: A novel hydrazine electrochemical sensor based on the high specific surface area graphene
  publication-title: Microchim. Ichnoanal. Acta
– start-page: 1900040
  year: 2019
  ident: bib0245
  article-title: Digital Inkjet Printing of High‐Efficiency Large‐Area Nonfullerene Organic Solar Cells
  publication-title: Adv. Mater. Technol.
– volume: 5
  start-page: 22935
  year: 2015
  end-page: 22942
  ident: bib0095
  article-title: Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor
  publication-title: RSC Adv.
– volume: 86
  start-page: 193
  year: 2002
  end-page: 197
  ident: bib0110
  article-title: An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper
  publication-title: Sens. Actuators B-Chem.
– volume: 131
  start-page: 106
  year: 2006
  end-page: 110
  ident: bib0030
  article-title: The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array
  publication-title: Analyst
– volume: 262
  start-page: 588
  year: 2015
  end-page: 596
  ident: bib0145
  article-title: Enhanced photocatalytic degradation of harmful dye and phenyl hydrazine chemical sensing using ZnO nanourchins
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 1027
  year: 2015
  end-page: 1033
  ident: bib0150
  article-title: Electrocatalytic behavior of hemoglobin oxidation of hydrazine based on ZnO nano-rods with carbon nanofiber modified electrode
  publication-title: Anal. Sci.
– volume: 41
  start-page: 3101
  year: 2015
  end-page: 3108
  ident: bib0080
  article-title: Zinc oxide nanocones as potential scaffold for the fabrication of ultra-high sensitive hydrazine chemical sensor
  publication-title: Ceram. Int.
– volume: 4
  start-page: 1272
  year: 2012
  end-page: 1277
  ident: bib0190
  article-title: Platinum screen printed electrodes for the electroanalytical sensing of hydrazine and hydrogen peroxide
  publication-title: Anal. Methods
– volume: 62
  start-page: 127
  year: 2014
  end-page: 133
  ident: bib0215
  article-title: Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications
  publication-title: Biosens. Bioelectron.
– volume: 13
  start-page: 3566
  year: 2018
  end-page: 3574
  ident: bib0085
  article-title: Highly sensitive electrochemical sensing platform for hydrazine detection
  publication-title: Int. J. Electrochem. Sci.
– volume: 75
  start-page: 27
  year: 2008
  end-page: 31
  ident: bib0055
  article-title: Spectrophotometric determination of hydrazine
  publication-title: Talanta
– volume: 45
  start-page: 1111
  year: 2012
  end-page: 1113
  ident: bib0195
  article-title: Gold nanoparticles modified ceria nanoparticles for the oxidation of hydrazine with disposable screen-printed electrode
  publication-title: Measurement
– volume: 23
  start-page: 1568
  year: 2011
  end-page: 1578
  ident: bib0200
  article-title: Facile synthesis of Pd nanoparticle modified carbon black for electroanalysis: application to the detection of hydrazine
  publication-title: Electroanalysis
– volume: 51
  start-page: 1368
  year: 2018
  end-page: 1376
  ident: bib0100
  article-title: Conjugated polymers in bioelectronics
  publication-title: Acc. Chem. Res.
– volume: 224
  start-page: 878
  year: 2016
  end-page: 884
  ident: bib0210
  article-title: Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection
  publication-title: Sens. Actuators B-Chem.
– volume: 18
  start-page: 115
  year: 2005
  end-page: 122
  ident: bib0025
  article-title: Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat
  publication-title: Chem. Res. Toxicol.
– volume: 780
  start-page: 257
  year: 2016
  end-page: 263
  ident: bib0165
  article-title: Electrocatalytic oxidation and detection of hydrazine at conducting polymer/lignosulfonate composite modified electrodes
  publication-title: J. Electroanal. Chem.
– volume: 39
  start-page: 8693
  year: 2010
  end-page: 8697
  ident: bib0185
  article-title: C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability
  publication-title: Dalton Trans.
– volume: 2
  start-page: 30
  year: 2018
  ident: bib0125
  article-title: A fully inkjet-printed disposable glucose sensor on paper
  publication-title: Npj Flex. Electron.
– volume: 5
  start-page: 54379
  year: 2015
  end-page: 54386
  ident: bib0225
  article-title: An electrochemical synthesis strategy for composite based ZnO microspheres-Au nanoparticles on reduced graphene oxide for the sensitive detection of hydrazine in water samples
  publication-title: RSC Adv.
– volume: 55
  start-page: 178
  year: 2009
  end-page: 182
  ident: bib0075
  article-title: A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode
  publication-title: Electrochim. Acta
– volume: 343
  start-page: 467
  year: 2017
  end-page: 476
  ident: bib0045
  article-title: Preparation of CuO/NiO composite nanofibers by electrospinning and their application for electro-catalytic oxidation of hydrazine
  publication-title: J. Power Sources
– volume: 10
  start-page: 395
  year: 1970
  end-page: 412
  ident: bib0020
  article-title: Aerospace problems in pharmacology and toxicology
  publication-title: Annu. Rev. Pharmacol.
– volume: 17
  start-page: 289
  year: 2018
  end-page: 321
  ident: bib0070
  article-title: Deposition of nanomaterials: a crucial step in biosensor fabrication
  publication-title: Mater. Today Commun.
– volume: 6
  start-page: 29342
  year: 2016
  end-page: 29352
  ident: bib0130
  article-title: Ultrasensitive and selective hydrazine sensor development based on Sn/ZnO nanoparticles
  publication-title: RSC Adv.
– volume: 19
  start-page: 2951
  year: 2015
  end-page: 2959
  ident: bib0115
  article-title: Multi-layer PEDOT:PSS/Pd composite electrodes for hydrazine oxidation
  publication-title: J. Solid State Electrochem.
– volume: 8
  start-page: 5832
  year: 2016
  end-page: 5837
  ident: bib0060
  article-title: Rapid detection of hydrazine in almost wholly water solution and in living cells with a new colorimetric and fluorescent turn-on probe
  publication-title: Anal. Methods
– volume: 184
  start-page: 3163
  year: 2017
  end-page: 3170
  ident: bib0040
  article-title: Amperometric sensing of hydrazine using a magnetic glassy carbon electrode modified with a ternary composite prepared from Prussian blue, Fe3O4 nanoparticles, and reduced graphene oxide
  publication-title: Microchim. Ichnoanal. Acta
– volume: 39
  start-page: 111
  year: 1977
  end-page: 126
  ident: bib0005
  article-title: Mutagenicity of hydrazine and some of its derivatives
  publication-title: Mutat. Res.
– volume: 468
  start-page: 195
  year: 2014
  end-page: 201
  ident: bib0220
  article-title: Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid
  publication-title: Sci. Total Environ.
– volume: 52
  start-page: 6248
  year: 2007
  end-page: 6253
  ident: bib0170
  article-title: Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 4619
  year: 2016
  end-page: 4631
  ident: bib0235
  article-title: Determination of hydrazine in various water samples by square wave voltammetry with zinc-layered hydroxide-3(4-methoxyphenyl) propionate nanocomposite modified glassy carbon electrode
  publication-title: Int. J. Electrochem. Sci.
– volume: 6
  year: 2016
  ident: bib0135
  article-title: Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics
  publication-title: Sci. Rep.
– volume: 763
  start-page: 997
  year: 2018
  end-page: 1004
  ident: bib0175
  article-title: Fabrication of a sensitive electrochemical sensor to environmental pollutant of hydrazine in real water samples based on synergistic catalysis of Ag@C core-shell and polyalizarin yellow R
  publication-title: J. Alloys Compd.
– volume: 364
  start-page: 434
  year: 2016
  end-page: 441
  ident: bib0090
  article-title: Controllable synthesis of branched hierarchical ZnO nanorod arrays for highly sensitive hydrazine detection
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 5
  year: 2014
  ident: bib0105
  article-title: Differentiation of the aging process of PEDOT:PSS films under inert helium and ambient atmosphere for two different rates of thermal treatment
  publication-title: Open J. Org. Polym. Mater.
– volume: 173
  start-page: 177
  year: 2012
  ident: 10.1016/j.snb.2019.127539_bib0160
  article-title: Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2012.06.065
– volume: 286
  start-page: 139
  year: 2019
  ident: 10.1016/j.snb.2019.127539_bib0065
  article-title: One-step synthesis and decoration of nickel oxide nanosheets with gold nanoparticles by reduction method for hydrazine sensing application
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2019.01.132
– volume: 2
  start-page: 30
  year: 2018
  ident: 10.1016/j.snb.2019.127539_bib0125
  article-title: A fully inkjet-printed disposable glucose sensor on paper
  publication-title: Npj Flex. Electron.
  doi: 10.1038/s41528-018-0044-y
– volume: 3
  start-page: 34004
  issue: 3
  year: 2018
  ident: 10.1016/j.snb.2019.127539_bib0240
  article-title: Fully printed all-polymer tattoo/textile electronics for electromyography
  publication-title: Flexible and Printed Electronics
  doi: 10.1088/2058-8585/aadb56
– volume: 54
  start-page: 900
  year: 2011
  ident: 10.1016/j.snb.2019.127539_bib0035
  article-title: Control and analysis of hydrazine, hydrazides and hydrazones-genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2010.11.007
– volume: 39
  start-page: 111
  year: 1977
  ident: 10.1016/j.snb.2019.127539_bib0005
  article-title: Mutagenicity of hydrazine and some of its derivatives
  publication-title: Mutat. Res.
  doi: 10.1016/0165-1110(77)90018-5
– volume: 343
  start-page: 467
  year: 2017
  ident: 10.1016/j.snb.2019.127539_bib0045
  article-title: Preparation of CuO/NiO composite nanofibers by electrospinning and their application for electro-catalytic oxidation of hydrazine
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.083
– volume: 6
  year: 2016
  ident: 10.1016/j.snb.2019.127539_bib0135
  article-title: Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics
  publication-title: Sci. Rep.
  doi: 10.1038/srep27689
– volume: 5
  start-page: 54379
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0225
  article-title: An electrochemical synthesis strategy for composite based ZnO microspheres-Au nanoparticles on reduced graphene oxide for the sensitive detection of hydrazine in water samples
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05612H
– volume: 4
  start-page: 5
  issue: 1
  year: 2014
  ident: 10.1016/j.snb.2019.127539_bib0105
  article-title: Differentiation of the aging process of PEDOT:PSS films under inert helium and ambient atmosphere for two different rates of thermal treatment
  publication-title: Open J. Org. Polym. Mater.
– volume: 9
  start-page: 4686
  year: 2009
  ident: 10.1016/j.snb.2019.127539_bib0180
  article-title: ZnO nanorods based hydrazine sensors
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2009.1103
– volume: 21
  start-page: 5879
  year: 2014
  ident: 10.1016/j.snb.2019.127539_bib0050
  article-title: An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-2529-0
– volume: 51
  start-page: 1368
  year: 2018
  ident: 10.1016/j.snb.2019.127539_bib0100
  article-title: Conjugated polymers in bioelectronics
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00624
– volume: 763
  start-page: 997
  year: 2018
  ident: 10.1016/j.snb.2019.127539_bib0175
  article-title: Fabrication of a sensitive electrochemical sensor to environmental pollutant of hydrazine in real water samples based on synergistic catalysis of Ag@C core-shell and polyalizarin yellow R
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.06.038
– volume: 12
  start-page: 291
  year: 1956
  ident: 10.1016/j.snb.2019.127539_bib0015
  article-title: Effect of vitamins on the acute toxicity of hydrazine derivatives
  publication-title: Experientia
  doi: 10.1007/BF02159613
– volume: 5
  start-page: 22935
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0095
  article-title: Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor
  publication-title: RSC Adv.
  doi: 10.1039/C5RA00884K
– volume: 364
  start-page: 434
  year: 2016
  ident: 10.1016/j.snb.2019.127539_bib0090
  article-title: Controllable synthesis of branched hierarchical ZnO nanorod arrays for highly sensitive hydrazine detection
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.165
– volume: 52
  start-page: 6248
  year: 2007
  ident: 10.1016/j.snb.2019.127539_bib0170
  article-title: Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.019
– volume: 62
  start-page: 127
  year: 2014
  ident: 10.1016/j.snb.2019.127539_bib0215
  article-title: Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.06.023
– volume: 468
  start-page: 195
  year: 2014
  ident: 10.1016/j.snb.2019.127539_bib0220
  article-title: Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.08.044
– volume: 41
  start-page: 3101
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0080
  article-title: Zinc oxide nanocones as potential scaffold for the fabrication of ultra-high sensitive hydrazine chemical sensor
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.10.154
– start-page: 1900040
  year: 2019
  ident: 10.1016/j.snb.2019.127539_bib0245
  article-title: Digital Inkjet Printing of High‐Efficiency Large‐Area Nonfullerene Organic Solar Cells
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900040
– volume: 55
  start-page: 178
  year: 2009
  ident: 10.1016/j.snb.2019.127539_bib0075
  article-title: A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.08.036
– volume: 23
  start-page: 1568
  year: 2011
  ident: 10.1016/j.snb.2019.127539_bib0200
  article-title: Facile synthesis of Pd nanoparticle modified carbon black for electroanalysis: application to the detection of hydrazine
  publication-title: Electroanalysis
  doi: 10.1002/elan.201100163
– volume: 18
  start-page: 115
  year: 2005
  ident: 10.1016/j.snb.2019.127539_bib0025
  article-title: Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx0498915
– volume: 11
  start-page: 4619
  year: 2016
  ident: 10.1016/j.snb.2019.127539_bib0235
  article-title: Determination of hydrazine in various water samples by square wave voltammetry with zinc-layered hydroxide-3(4-methoxyphenyl) propionate nanocomposite modified glassy carbon electrode
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2016.06.59
– volume: 86
  start-page: 193
  year: 2002
  ident: 10.1016/j.snb.2019.127539_bib0110
  article-title: An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/S0925-4005(02)00170-3
– volume: 39
  start-page: 8693
  year: 2010
  ident: 10.1016/j.snb.2019.127539_bib0185
  article-title: C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt00258e
– volume: 131
  start-page: 106
  year: 2006
  ident: 10.1016/j.snb.2019.127539_bib0030
  article-title: The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array
  publication-title: Analyst
  doi: 10.1039/B513751A
– volume: 12
  start-page: 2213
  year: 2010
  ident: 10.1016/j.snb.2019.127539_bib0140
  article-title: Hierarchical ZnO micro/nanoarchitectures: hydrothermal preparation, characterization and application in the detection of hydrazine
  publication-title: CrystEngComm
  doi: 10.1039/b923857n
– volume: 13
  start-page: 3566
  year: 2018
  ident: 10.1016/j.snb.2019.127539_bib0085
  article-title: Highly sensitive electrochemical sensing platform for hydrazine detection
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2018.04.38
– volume: 31
  start-page: 1027
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0150
  article-title: Electrocatalytic behavior of hemoglobin oxidation of hydrazine based on ZnO nano-rods with carbon nanofiber modified electrode
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.31.1027
– volume: 45
  start-page: 1111
  year: 2012
  ident: 10.1016/j.snb.2019.127539_bib0195
  article-title: Gold nanoparticles modified ceria nanoparticles for the oxidation of hydrazine with disposable screen-printed electrode
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.01.029
– volume: 169
  start-page: 1
  year: 2010
  ident: 10.1016/j.snb.2019.127539_bib0155
  article-title: A novel hydrazine electrochemical sensor based on the high specific surface area graphene
  publication-title: Microchim. Ichnoanal. Acta
  doi: 10.1007/s00604-010-0304-6
– volume: 184
  start-page: 3163
  year: 2017
  ident: 10.1016/j.snb.2019.127539_bib0040
  article-title: Amperometric sensing of hydrazine using a magnetic glassy carbon electrode modified with a ternary composite prepared from Prussian blue, Fe3O4 nanoparticles, and reduced graphene oxide
  publication-title: Microchim. Ichnoanal. Acta
  doi: 10.1007/s00604-017-2289-x
– volume: 27
  start-page: 1403
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0010
  article-title: An amperometric biological toxic hydrazine sensor based on multiwalled carbon nanotubes and iron tetrasulfonated phthalocyanine composite modified electrode
  publication-title: Electroanalysis
  doi: 10.1002/elan.201400659
– volume: 17
  start-page: 289
  year: 2018
  ident: 10.1016/j.snb.2019.127539_bib0070
  article-title: Deposition of nanomaterials: a crucial step in biosensor fabrication
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2018.09.024
– volume: 19
  start-page: 2951
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0115
  article-title: Multi-layer PEDOT:PSS/Pd composite electrodes for hydrazine oxidation
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-015-2907-7
– volume: 6
  start-page: 29342
  year: 2016
  ident: 10.1016/j.snb.2019.127539_bib0130
  article-title: Ultrasensitive and selective hydrazine sensor development based on Sn/ZnO nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C6RA02352E
– volume: 780
  start-page: 257
  year: 2016
  ident: 10.1016/j.snb.2019.127539_bib0165
  article-title: Electrocatalytic oxidation and detection of hydrazine at conducting polymer/lignosulfonate composite modified electrodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.09.030
– volume: 30
  start-page: 1749
  year: 2018
  ident: 10.1016/j.snb.2019.127539_bib0230
  article-title: Gold nanoparticles decorated graphene as a high performance sensor for determination of trace hydrazine levels in water
  publication-title: Electroanalysis
  doi: 10.1002/elan.201800125
– volume: 4
  start-page: 1272
  year: 2012
  ident: 10.1016/j.snb.2019.127539_bib0190
  article-title: Platinum screen printed electrodes for the electroanalytical sensing of hydrazine and hydrogen peroxide
  publication-title: Anal. Methods
  doi: 10.1039/c2ay05934g
– volume: 10
  start-page: 395
  year: 1970
  ident: 10.1016/j.snb.2019.127539_bib0020
  article-title: Aerospace problems in pharmacology and toxicology
  publication-title: Annu. Rev. Pharmacol.
  doi: 10.1146/annurev.pa.10.040170.002143
– volume: 224
  start-page: 878
  year: 2016
  ident: 10.1016/j.snb.2019.127539_bib0210
  article-title: Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2015.09.016
– volume: 751
  start-page: 65
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0205
  article-title: Voltammetric determination of phytoinhibitor maleic hydrazide using PEDOT:PSS composite electrode
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2015.05.032
– volume: 6
  year: 2017
  ident: 10.1016/j.snb.2019.127539_bib0120
  article-title: Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201601167
– volume: 75
  start-page: 27
  year: 2008
  ident: 10.1016/j.snb.2019.127539_bib0055
  article-title: Spectrophotometric determination of hydrazine
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.09.002
– volume: 8
  start-page: 5832
  year: 2016
  ident: 10.1016/j.snb.2019.127539_bib0060
  article-title: Rapid detection of hydrazine in almost wholly water solution and in living cells with a new colorimetric and fluorescent turn-on probe
  publication-title: Anal. Methods
  doi: 10.1039/C6AY01367H
– volume: 262
  start-page: 588
  year: 2015
  ident: 10.1016/j.snb.2019.127539_bib0145
  article-title: Enhanced photocatalytic degradation of harmful dye and phenyl hydrazine chemical sensing using ZnO nanourchins
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.09.111
SSID ssj0004360
Score 2.5783386
Snippet [Display omitted] •The preparation of fully inkjet printed PEDOT:PSS/ZnO/Nafion sensor on commercial printing paper..•A paper based electrochemical sensor for...
Hydrazine is widely used in industries as a precursor for blowing agents, pharmaceuticals, and pesticides. It is a highly toxic compound; therefore, it is of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127539
SubjectTerms Blowing agents
Electrical measurement
Electrochemical analysis
Electrodes
Hydrazine sensor
Hydrazines
Inkjet printing
Low concentrations
Paper electronics
PEDOT:PSS
Pesticides
Point-of-care sensor
Polystyrene resins
Sensitivity
Sensors
Sol-gel processes
Sol–gel
Zinc oxide
Zinc oxides
Title A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor
URI https://dx.doi.org/10.1016/j.snb.2019.127539
https://www.proquest.com/docview/2369801345
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEYUyR48mRR26WO33ghCUCOQAAnx0rTdrkLIQhY8ePG32-7DVwwHr5uZZvN1Oo_db6YAXGmGXEUwhYT4CGIchVBqT0JPUlv7eMITtlH4sU97E3w_JdMSaBe9MJZWmfv-zKen3jp_0sjRbKxms8bIZaa4yVIQz0dp-zXGvrXy-vsXzQOjtFPYCkMrXfzZTDle61hadher2zHn9r7wv2PTLy-dhp7uAdjPc0anlb3WISjp-AjsfZskeAzaLWclVjqBNiqFjikw53oD7Uc7k1E6w87tYHwzHI0aT_HAMdYGn_XCeXkLk3S4tLM2tewyOQGTbmfc7sH8fgSoEA02ECPLAdWCuVIzHbEgDBlVBGk_0K7CkdTCJDRYKnOsaehqXwcIS8JwSBRVXoROQTlexvoMOLLJKCFCBMimcFSwQHgRVYgZLSabqALcAhmu8uHh9g6LBS9YYnNuwOQWTJ6BWQHXnyqrbHLGNmFcwM1_bD83nn2bWrXYGp6fvTVvIspM3EWYnP9v1Quw27RVdco0q4LyJnnVlyb12Mhaals1sNO6e-j1PwBKwdTq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQOQAHxCoKBXLghGSa1EtjblUpKtBNaitVXCzbcaAIhaotB_4eTxY2IQ5cI08UvYxn3iRvxgidWUF8wyjHjNUJpjSOsLaBxoHmUPsEKlDQKNzt8faY3k7YZAU1i14YkFXmsT-L6Wm0zq9UczSrs-m0OvSFK24yChLUCbRfr8J0KlZCq42bu3bvsz2SpM3CsB6DQfFzM5V5LRINAi9xAZPO4cjw39PTj0CdZp_rLbSZ00avkT3ZNlqxyQ7a-DJMcBc1G95MzewcQ2KKPFdjPtklhu92jlR6g9ZVf3Q5GA6r90nfcw6HH-yz9_gWzdP50t7ClbMv8z00vm6Nmm2cH5GADeHhElMCMlCrhK-tsLEIo0hww4ith9Y3NNZWOU5DtXE7m0e-rduQUM0EjZjhJojJPiolL4k9QJ6uCc6YUiEBFseVCFUQc0OEsxK6RsrIL5CRJp8fDsdYPMtCKPYkHZgSwJQZmGV0_mEyy4Zn_LWYFnDLbx4gXXD_y6xSvBqZb7-FrBEuXOollB3-766naK096nZk56Z3d4TWa1Bkp8KzCiot56_22DGRpT7JPe0drQrXmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+paper-based+inkjet-printed+PEDOT%3APSS%2FZnO+sol-gel+hydrazine+sensor&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Beduk%2C+Tutku&rft.au=Bihar%2C+Eloise&rft.au=Surya%2C+Sandeep+G.&rft.au=Castillo%2C+Aminta+N.&rft.date=2020-03-01&rft.issn=0925-4005&rft.volume=306&rft.spage=127539&rft_id=info:doi/10.1016%2Fj.snb.2019.127539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2019_127539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon