Vacuum ultraviolet spectroscopy of pyrimidine derivatives: the effect of halogenation
As a prototypical molecule in the important class of halopyrimidines, 2-chloropyrimidine has been the subject of numerous spectroscopic studies. However, its absorption spectrum under vacuum ultraviolet (VUV) radiation has not yet been reported. Here, we close this gap by presenting high-resolution...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 27; no. 18; pp. 9687 - 971 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
08.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As a prototypical molecule in the important class of halopyrimidines, 2-chloropyrimidine has been the subject of numerous spectroscopic studies. However, its absorption spectrum under vacuum ultraviolet (VUV) radiation has not yet been reported. Here, we close this gap by presenting high-resolution VUV photoabsorption cross-sections in the 3.7-10.8 eV range. Based on time-dependent density functional theory (TDDFT) calculations performed within the nuclear ensemble approach, we are able to characterize the main features of the measured spectrum. By comparing the present results for 2-chloropyrimidine with those of 2-bromopyrimidine and pyrimidine, we find that the effect of the halogen atom increases remarkably with the photon energy. The two lowest-lying absorption bands are overall similar for the three molecules, apart from some differences in the vibrational progressions in band I (3.7-4.6 eV) and minor energy shifts in band II (4.6-5.7 eV). Larger shifts appear in band III (5.7-6.7 eV), especially when comparing pyrimidine with the two halogenated species. The three molecules absorb more strongly in the region of band IV (6.7-8.2 eV), where the bands look qualitatively different because the mixing of excited configurations is strongly dependent on the species. At higher energies (8.2-10.8 eV) the three spectra no longer resemble each other. An important finding of this study is the very satisfactory comparison between experiment and theory, as the combination of TDDFT calculations with the nuclear ensemble approach yields cross-sections much closer to experiments than the simpler vertical approximation, in shape and magnitude, and across the whole spectral range surveyed here.
The first VUV absorption spectrum of 2-chloropyrimidine compared with that of pyrimidine shows that halogen effects grow with energy. TDDFT with the nuclear ensemble method closely matches experiment, outperforming the simpler vertical approximation. |
---|---|
Bibliography: | https://doi.org/10.1039/d5cp00198f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/d5cp00198f |