Electroacupuncture ameliorates neuroinflammation in animal models

Background: Neuroinflammation refers to a wide range of immune responses occurring in the brain or spinal cord. It is closely related to a variety of neurodegenerative diseases, for which it potentially represents a new direction for treatment. Electroacupuncture (EA) is one method of acupuncture tr...

Full description

Saved in:
Bibliographic Details
Published inAcupuncture in medicine : journal of the British Medical Acupuncture Society Vol. 40; no. 5; pp. 474 - 483
Main Authors Xin, Yue-yang, Wang, Jin-xu, Xu, Ai-jun
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.10.2022
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Neuroinflammation refers to a wide range of immune responses occurring in the brain or spinal cord. It is closely related to a variety of neurodegenerative diseases, for which it potentially represents a new direction for treatment. Electroacupuncture (EA) is one method of acupuncture treatment, which can be used as an adjuvant therapy for many diseases. This review focuses on molecular mechanisms of EA in the reduction of neuroinflammation, summarizes relevant basic research and outlines future directions for investigation. Findings: A growing body of basic research has shown that EA can ameliorate neuroinflammation centrally (in animal models of ischemic stroke, Alzheimer’s disease, traumatic brain injury, spinal cord injury, Parkinson’s disease and vascular dementia) and peripherally (e.g. after a surgical insult or injection of lipopolysaccharide) and that its effects involve different molecular mechanisms, including activation of the α7 nicotinic acetylcholine receptor signaling pathway and P2 type purinergic receptors, inhibition of nuclear factor κB, and mitigation of damage secondary to oxidative stress and NOD-like receptor protein 3 inflammasome activation. Conclusions: EA is capable of regulating multiple cell signal transduction pathways to alleviate neuroinflammation in animal models. Although the findings of animal studies are encouraging, further prospective clinical trials are needed to verify the efficacy of EA for the treatment of neuroinflammation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0964-5284
1759-9873
1759-9873
DOI:10.1177/09645284221076515