High water vapour pressure deficit influence on Quercus ilex and Pinus pinea field monoterpene emission in the central Iberian Peninsula (Spain)

The results of a field study carried out in September–October 2000 near Madrid, regarding Quercus ilex and Pinus pinea monoterpene emission and its relation to ambient and physiological parameters, are presented in this paper. The major compounds in diurnal Q. ilex emission were limonene, α-pinene a...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 36; no. 28; pp. 4441 - 4452
Main Authors Núñez, L., Plaza, J., Pérez-Pastor, R., Pujadas, M., Gimeno, B.S., Bermejo, V., Garcı́a-Alonso, S.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2002
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The results of a field study carried out in September–October 2000 near Madrid, regarding Quercus ilex and Pinus pinea monoterpene emission and its relation to ambient and physiological parameters, are presented in this paper. The major compounds in diurnal Q. ilex emission were limonene, α-pinene and β-pinene. Emission rates during warm days fitted reasonably well to the temperature and light-dependent model of Guenther ( E S=13.4 μg g DW −1 h −1). However, during hot days at mid-day and afternoon hours, dramatic decreases of monoterpene emission, photosynthetic activity and stomatal conductance were observed. The poor soil–water availability combined with low relative humidity and high temperature is likely to be responsible for the observed emission drop. A parameterisation of emission, based on ambient atmospheric water vapour pressure deficit (WVPD), has been attempted in this study. Monoterpene diurnal emission from P. pinea was lower than that of Mediterranean oak ( E S=1.5 μg g DW −1 h −1). A reduction in the total emission during the hottest hours of the day was not observed in this monoterpene storing species. Limonene emission rates, accounting on average for nearly half of the emission, were well described by the temperature-dependent model of Tingey. The rest of the emission was comprised of several compounds (cineole, myrcene, α-pinene, linalool) and was reduced at high WVPD values.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1352-2310
1873-2844
DOI:10.1016/S1352-2310(02)00415-6