Gallic Acid and Gallates in Human Health and Disease: Do Mitochondria Hold the Key to Success?
Gallic acid and gallate esters are widely used as dietary supplements or additives with clinical significances. Over the last few decades, a large number of publications have been reported stating the antioxidative, antiapoptotic, cardioprotective, neuroprotective, and anticancer properties of galli...
Saved in:
Published in | Molecular nutrition & food research Vol. 62; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gallic acid and gallate esters are widely used as dietary supplements or additives with clinical significances. Over the last few decades, a large number of publications have been reported stating the antioxidative, antiapoptotic, cardioprotective, neuroprotective, and anticancer properties of gallic acid and gallates, and mostly demonstrated their antioxidative or prooxidative properties influencing the reactive oxygen species (ROS) signaling networks. However, very little focus has been paid to clinical trials, and this restricted their use as a prescribed preventative supplement. Since mitochondria are the principal organelles responsible for ROS generation, we reviewed the existing literature of mitochondria‐specific effects of gallates including ROS production, respiration, mitochondrial biogenesis, apoptosis, and the physico‐chemical parameters affecting the outcome of gallate supplementation to various health scenarios such as cardiovascular diseases, neurodegeneration, hepatic ailments, or cancers. The major signaling pathways and the molecules targeted by gallic acid and its derivatives have also been discussed with emphasis on mitochondria as the target site. This review provides a better understanding of the effect of gallic acid and gallate esters on mitochondrial functions and in designing effective preventative measures against the onset of various diseases.
The review highlights the central role of mitochondria through which gallates exert their health benefits. Most of the gallates act as both anti‐ or prooxidants subject to dosages and other treatment conditions. They frequently affect the oxidative metabolism and antioxidant enzyme activities, thereby altering reactive oxygen species (ROS) generation and subsequent mitochondrial functions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1613-4125 1613-4133 1613-4133 |
DOI: | 10.1002/mnfr.201700699 |