Generalization of a Theorem on the Equivalence of the Coordinate and Algebraic Definitions of a Smooth Manifold
In this paper, we generalize the theorem on the equivalence of the coordinate and algebraic definitions of a smooth manifold. Within the framework of the algebraic approach, a point is considered as a homomorphism from the algebra of smooth real functions defined on a manifold into the field of real...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 263; no. 5; pp. 710 - 712 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-022-05961-2 |
Cover
Loading…
Summary: | In this paper, we generalize the theorem on the equivalence of the coordinate and algebraic definitions of a smooth manifold. Within the framework of the algebraic approach, a point is considered as a homomorphism from the algebra of smooth real functions defined on a manifold into the field of real numbers. We consider a generalization for the case where the field of real numbers is replaced by an arbitrary associative normalized algebra, generally speaking, noncommutative. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-022-05961-2 |