Mushroom‐Mediated Redox Reactions
The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite bi...
Saved in:
Published in | Chemistry : a European journal Vol. 31; no. 2; pp. e202403010 - n/a |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite biosynthetic enzymes, and therefore were considered promising biocatalysts for organic synthesis. This review focuses on the broad utilization potential of mushroom‐based biocatalysts and highlights key advances in mushroom‐mediated redox reactions. It mainly includes the reduction of ketones and carboxylic acids, hydroxylation of aromatic and aliphatic compounds, epoxidation of olefins, oxidative cleavage of alkenes, and other uncommon reactions catalyzed by the whole cells or purified enzymes of mushroom origin. Overall, a comprehensive overview of the applications of mushrooms as biocatalysts in organic synthesis is provided, which puts this versatile microorganism in the spotlight of further research.
Mushroom is a rich source of enzymes and therefore is a promising biocatalyst for organic synthesis. This review highlights key advances in mushroom‐mediated redox reactions using whole cells, purified enzymes or recombinant enzymes, including the reduction of carbonyl compounds and carboxylic acids, oxidation of C−H bonds, epoxidation of olefins and oxidative cleavage of alkenes. |
---|---|
AbstractList | The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite biosynthetic enzymes, and therefore were considered promising biocatalysts for organic synthesis. This review focuses on the broad utilization potential of mushroom‐based biocatalysts and highlights key advances in mushroom‐mediated redox reactions. It mainly includes the reduction of ketones and carboxylic acids, hydroxylation of aromatic and aliphatic compounds, epoxidation of olefins, oxidative cleavage of alkenes, and other uncommon reactions catalyzed by the whole cells or purified enzymes of mushroom origin. Overall, a comprehensive overview of the applications of mushrooms as biocatalysts in organic synthesis is provided, which puts this versatile microorganism in the spotlight of further research. The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite biosynthetic enzymes, and therefore were considered promising biocatalysts for organic synthesis. This review focuses on the broad utilization potential of mushroom‐based biocatalysts and highlights key advances in mushroom‐mediated redox reactions. It mainly includes the reduction of ketones and carboxylic acids, hydroxylation of aromatic and aliphatic compounds, epoxidation of olefins, oxidative cleavage of alkenes, and other uncommon reactions catalyzed by the whole cells or purified enzymes of mushroom origin. Overall, a comprehensive overview of the applications of mushrooms as biocatalysts in organic synthesis is provided, which puts this versatile microorganism in the spotlight of further research. Mushroom is a rich source of enzymes and therefore is a promising biocatalyst for organic synthesis. This review highlights key advances in mushroom‐mediated redox reactions using whole cells, purified enzymes or recombinant enzymes, including the reduction of carbonyl compounds and carboxylic acids, oxidation of C−H bonds, epoxidation of olefins and oxidative cleavage of alkenes. The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite biosynthetic enzymes, and therefore were considered promising biocatalysts for organic synthesis. This review focuses on the broad utilization potential of mushroom-based biocatalysts and highlights key advances in mushroom-mediated redox reactions. It mainly includes the reduction of ketones and carboxylic acids, hydroxylation of aromatic and aliphatic compounds, epoxidation of olefins, oxidative cleavage of alkenes, and other uncommon reactions catalyzed by the whole cells or purified enzymes of mushroom origin. Overall, a comprehensive overview of the applications of mushrooms as biocatalysts in organic synthesis is provided, which puts this versatile microorganism in the spotlight of further research.The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite biosynthetic enzymes, and therefore were considered promising biocatalysts for organic synthesis. This review focuses on the broad utilization potential of mushroom-based biocatalysts and highlights key advances in mushroom-mediated redox reactions. It mainly includes the reduction of ketones and carboxylic acids, hydroxylation of aromatic and aliphatic compounds, epoxidation of olefins, oxidative cleavage of alkenes, and other uncommon reactions catalyzed by the whole cells or purified enzymes of mushroom origin. Overall, a comprehensive overview of the applications of mushrooms as biocatalysts in organic synthesis is provided, which puts this versatile microorganism in the spotlight of further research. |
Author | Yang, Yan‐Long |
Author_xml | – sequence: 1 givenname: Yan‐Long orcidid: 0000-0002-8944-5713 surname: Yang fullname: Yang, Yan‐Long email: ylyang@lzu.edu.cn organization: Lanzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39632266$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0LtOwzAUBmALgegFVkaE1IUl5fgSJx5RVShSKyQEs-XaJ2qqJC5xI-jGI_CMPAmpWorEwuKzfP_R8d8jx5WvkJALCkMKwG7sAsshAyaAA4Uj0qUxoxFPZHxMuqBEEsmYqw7phbAEACU5PyUd3k7GpOySwawJi9r78uvjc4YuN2t0V0_o_Hv7GrvOfRXOyElmioDn-9knL3fj59Ekmj7eP4xup5HlMoUotZTShAqYM8xMFs_BmgwzRx1IpxLDUHHuMsWlZVakyGys0Nk0BRMz4ZD3yfVu76r2rw2GtS7zYLEoTIW-CZpTIWOqKE9aOvhDl76pq_a6VsUCmBRCtepyr5p5iU6v6rw09Ub_fL8Fwx2wtQ-hxuxAKOhtv3rbrz702wbULvCWF7j5R-vRZDz7zX4DAft8vQ |
Cites_doi | 10.2174/092986711794927766 10.1039/c2gc16317a 10.1002/anie.200601574 10.1016/j.cbpa.2016.01.002 10.1016/j.foodres.2021.110909 10.3390/app11136161 10.1002/anie.202407425 10.1038/s41467-022-35500-1 10.1016/j.copbio.2018.11.011 10.1038/s41467-017-01659-1 10.1016/j.bbrc.2009.06.134 10.1007/s00253-010-2576-5 10.1002/anie.202308881 10.1002/anie.202001870 10.3390/antiox11010163 10.1007/s002530051600 10.1080/03601230701316465 10.1016/j.fgb.2016.07.008 10.1002/anie.202215566 10.1021/jacs.9b08935 10.3762/bjoc.9.262 10.1039/C8OB02814A 10.1016/j.mcat.2023.113451 10.1016/j.bioorg.2021.104651 10.1002/anie.201510928 10.1002/anie.202313817 10.3390/molecules25071536 10.1039/C9NP00075E 10.1016/j.tetasy.2009.02.008 10.1002/cbic.202100183 10.1016/j.jbiotec.2024.03.015 10.1002/anie.201705489 10.3389/fbioe.2021.705630 10.1016/j.cbpa.2014.01.015 10.1080/14740338.2022.2047929 10.1002/adsc.201801312 10.1111/1541-4337.12602 10.1016/j.bbrc.2005.07.013 10.1007/s13225-013-0265-2 10.1002/ejoc.200800261 10.1111/ijfs.16829 10.1016/j.biotechadv.2020.107615 10.1128/AEM.70.8.4575-4581.2004 10.20307/nps.2020.26.2.118 10.4236/aim.2012.22008 10.1038/s41467-023-39108-x 10.1007/978-3-319-16009-2_13 10.1016/j.bcab.2024.103262 10.1007/s00253-021-11444-2 10.1016/j.sbi.2022.102342 10.1021/acs.orglett.3c01924 10.1111/j.1365-2958.2009.06717.x 10.1039/D0NP00077A 10.4236/abb.2016.711043 10.3762/bjoc.14.58 10.1007/s00253-021-11337-4 10.1128/AEM.01091-18 10.1007/s10532-011-9521-x 10.1002/bit.26583 10.1016/j.phytochem.2018.07.009 10.1007/978-3-319-59542-9_1 10.3390/pr10040726 10.1098/rstb.2022.0033 10.1021/acscentsci.0c01496 10.1002/cbic.201300601 10.1093/jb/mvp155 10.1016/j.jbiosc.2022.10.001 10.1021/jacs.9b01083 10.1007/s00253-023-12872-y 10.1039/D1CS00100K 10.1002/anie.201700565 10.1016/j.tetasy.2007.05.036 10.1002/elsc.201800039 10.1016/j.bbrc.2022.01.072 10.1016/j.molcatb.2015.08.002 10.1080/14786419.2023.2291819 10.1002/ejoc.202101436 10.1016/j.enzmictec.2022.110037 10.1016/j.foodchem.2019.03.091 10.1007/s00253-021-11717-w |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. 2025 Wiley-VCH GmbH |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2025 Wiley-VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202403010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 39632266 10_1002_chem_202403010 CHEM202403010 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: the Fundamental Research Funds for the Central Universities funderid: lzujbky-2023-19 – fundername: National Natural Science Foundation of China funderid: 22077057 – fundername: National Natural Science Foundation of China grantid: 22077057 – fundername: the Fundamental Research Funds for the Central Universities grantid: lzujbky-2023-19 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 53G 7X8 |
ID | FETCH-LOGICAL-c3680-8c1117140b2efaf5b0cafefd1d06d97a2e933df936c2c48e2c59edc880a524de3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 07:07:39 EDT 2025 Fri Jul 25 11:53:20 EDT 2025 Mon Jul 21 06:00:31 EDT 2025 Tue Jul 01 00:44:10 EDT 2025 Wed Jan 22 17:13:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | C−H oxidation Reduction Biocatalysis p450s Mushroom |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3680-8c1117140b2efaf5b0cafefd1d06d97a2e933df936c2c48e2c59edc880a524de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8944-5713 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/chem.202403010 |
PMID | 39632266 |
PQID | 3154026449 |
PQPubID | 986340 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3146519137 proquest_journals_3154026449 pubmed_primary_39632266 crossref_primary_10_1002_chem_202403010 wiley_primary_10_1002_chem_202403010_CHEM202403010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 9, 2025 |
PublicationDateYYYYMMDD | 2025-01-09 |
PublicationDate_xml | – month: 01 year: 2025 text: January 9, 2025 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2017; 8 2010; 13 2021; 22 2022; 73 2013; 62 2024; 108 2005; 334 2010; 147 2019; 56 2019; 17 2024; 72 2016; 31 2019; 289 2020; 59 2024; 387 2018; 84 2023; 549 2022; 21 2024; 146 2012; 14 2019; 361 2011; 18 2008; 2008 2020; 19 2013; 9 2021; 38 2023; 62 2023; 25 2013; 14 2004; 70 2015; 851 2023; 135 2024; 63 2023; 378 1999; 52 2014; 19 2012; 23 2022; 595 2021; 9 2007; 18 2021; 7 2022; 152 2023; 14 2009; 20 2022; 51 2015; 122 2021; 105 2021; 108 2020; 37 2024; 59 2019; 141 2021; 51 2022; 158 2016; 55 2018; 18 2010; 87 2018; 155 2016; 7 2012; 2 2022; 2022 2021; 11 2023 2006; 45 2009; 72 2018; 112 2018; 115 2017; 56 2022; 13 2020; 26 2009; 387 2020; 25 2022; 10 2022; 11 2007; 42 2022; 106 2017; 106 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Yang E. (e_1_2_8_63_1) 2024; 146 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_17_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_2 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 Novak R. (e_1_2_8_10_1) 2010; 11 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_2 e_1_2_8_70_2 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_69_2 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Fessner N. D. (e_1_2_8_42_2) 2021; 11 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_86_2 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 Maciel M. J. M. (e_1_2_8_15_1) 2010; 13 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Han H. (e_1_2_8_52_1) 2024; 72 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_73_1 e_1_2_8_71_2 e_1_2_8_50_1 e_1_2_8_92_2 |
References_xml | – volume: 23 start-page: 343 year: 2012 end-page: 350 publication-title: Biodegradation – volume: 87 start-page: 457 year: 2010 end-page: 466 publication-title: Appl. Microbiol. Biotechnol. – volume: 7 start-page: 55 year: 2021 end-page: 71 publication-title: ACS Cent. Sci. – volume: 62 start-page: 1 year: 2013 end-page: 40 publication-title: Fungal Diversity – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 115 start-page: 1842 year: 2018 end-page: 1854 publication-title: Biotechnol. Bioeng. – volume: 141 start-page: 15519 year: 2019 end-page: 15523 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 697 year: 2018 end-page: 703 publication-title: Beilstein J. Org. Chem. – volume: 289 start-page: 545 year: 2019 end-page: 557 publication-title: Food Chem. – volume: 14 start-page: 639 year: 2012 end-page: 644 publication-title: Green Chem. – volume: 51 year: 2021 publication-title: Biotechnol. Adv. – volume: 26 start-page: 118 year: 2020 end-page: 131 publication-title: Nat. Prod. Sci. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 726 year: 2022 publication-title: Processes – volume: 122 start-page: 87 year: 2015 end-page: 92 publication-title: J. Mol. Catal. B – volume: 45 start-page: 5201 year: 2006 end-page: 5203 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 25 start-page: 1536 year: 2020 publication-title: Molecules – volume: 2022 year: 2022 publication-title: Eur. J. Org. Chem. – volume: 55 start-page: 5463 year: 2016 end-page: 5466 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 105 start-page: 6779 year: 2021 end-page: 6792 publication-title: Appl. Microbiol. Biotechnol. – volume: 37 start-page: 1065 year: 2020 end-page: 1079 publication-title: Nat. Prod. Rep. – volume: 42 start-page: 441 year: 2007 end-page: 451 publication-title: J. Environ. Sci. Health Part B – volume: 59 start-page: 84 year: 2024 end-page: 94 publication-title: Int. J. Food Sci. Technol. – volume: 19 start-page: 116 year: 2014 end-page: 125 publication-title: Curr. Opin. Chem. Biol. – volume: 135 start-page: 17 year: 2023 end-page: 24 publication-title: J. Biosci. Bioeng. – volume: 56 start-page: 179 year: 2019 end-page: 186 publication-title: Curr. Opin. Biotechnol. – volume: 13 start-page: 14 year: 2010 end-page: 15 publication-title: Electron. J. Biotechnol. – volume: 18 start-page: 790 year: 2011 end-page: 807 publication-title: Curr. Med. Chem. – volume: 21 start-page: 833 year: 2022 end-page: 840 publication-title: Expert Opin. Drug Saf. – volume: 52 start-page: 834 year: 1999 end-page: 838 publication-title: Appl. Microbiol. Biotechnol. – volume: 361 start-page: 2668 year: 2019 end-page: 2672 publication-title: Adv. Synth. Catal. – volume: 20 start-page: 1057 year: 2009 end-page: 1061 publication-title: Tetrahedron: Asymmetry – volume: 108 start-page: 113 year: 2024 publication-title: Appl. Microbiol. Biotechnol. – volume: 59 start-page: 12432 year: 2020 end-page: 12435 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 56 start-page: 4749 year: 2017 end-page: 4752 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 13 start-page: 7740 year: 2022 publication-title: Nat. Commun. – volume: 73 year: 2022 publication-title: Curr. Opin. Struct. Biol. – volume: 595 start-page: 35 year: 2022 end-page: 40 publication-title: Biochem. Biophys. Res. Commun. – volume: 158 year: 2022 publication-title: Enzyme Microb. Technol. – volume: 851 start-page: 341 year: 2015 end-page: 368 publication-title: Adv. Exp. Med. Biol. – volume: 9 start-page: 2233 year: 2013 end-page: 2241 publication-title: Beilstein J. Org. Chem. – volume: 105 start-page: 4111 year: 2021 end-page: 4126 publication-title: Appl. Microbiol. Biotechnol. – volume: 11 start-page: 182 year: 2010 end-page: 191 publication-title: Curr. Opin. Investig. Drugs – volume: 155 start-page: 83 year: 2018 end-page: 92 publication-title: Phytochemistry – volume: 141 start-page: 8198 year: 2019 end-page: 8206 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1831 year: 2017 publication-title: Nat. Commun. – volume: 9 year: 2021 publication-title: Front. Bioeng. Biotechnol. – volume: 22 start-page: 2857 year: 2021 end-page: 2861 publication-title: ChemBioChem – volume: 146 start-page: 11457 year: 2024 end-page: 11464 publication-title: J. Am. Chem. Soc. – volume: 84 start-page: e01091 year: 2018 end-page: 01018 publication-title: Appl. Environ. Microbiol. – volume: 11 start-page: 6161 year: 2021 publication-title: Appl. Sci. – volume: 31 start-page: 40 year: 2016 end-page: 49 publication-title: Curr. Opin. Chem. Biol. – volume: 11 start-page: 1708 year: 2021 publication-title: Biomol. Eng. – volume: 59 year: 2024 publication-title: Biocatal. Agric. Biotechnol. – volume: 152 year: 2022 publication-title: Food Res. Int. – volume: 17 start-page: 234 year: 2019 end-page: 239 publication-title: Org. Biomol. Chem. – volume: 11 start-page: 163 year: 2022 publication-title: Antioxidants – volume: 334 start-page: 1184 year: 2005 end-page: 1190 publication-title: Biochem. Biophys. Res. Commun. – volume: 387 start-page: 44 year: 2024 end-page: 48 publication-title: J. Biotechnol. – volume: 387 start-page: 103 year: 2009 end-page: 108 publication-title: Biochem. Biophys. Res. Commun. – volume: 72 start-page: 9227 year: 2024 end-page: 9235 publication-title: J. Agric. Food Chem. – volume: 25 start-page: 5345 year: 2023 end-page: 5349 publication-title: Org. Lett. – volume: 19 start-page: 2333 year: 2020 end-page: 2356 publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 112 start-page: 55 year: 2018 end-page: 63 publication-title: Fungal Genet. Biol. – volume: 106 start-page: 523 year: 2022 end-page: 534 publication-title: Appl. Microbiol. Biotechnol. – volume: 14 start-page: 2427 year: 2013 end-page: 2430 publication-title: ChemBioChem – volume: 70 start-page: 4575 year: 2004 end-page: 4581 publication-title: Appl. Environ. Microbiol. – volume: 108 year: 2021 publication-title: Bioorg. Chem. – start-page: 1 year: 2023 end-page: 7 publication-title: Nat. Prod. Res. – volume: 106 start-page: 1 year: 2017 end-page: 201 publication-title: Prog. Chem. Org. Nat. Prod. – volume: 2 start-page: 66 year: 2012 end-page: 71 publication-title: Adv. Microbiol. – volume: 7 start-page: 446 year: 2016 end-page: 453 publication-title: Adv. Biosci. Biotechnol. – volume: 38 start-page: 702 year: 2021 end-page: 722 publication-title: Nat. Prod. Rep. – volume: 51 start-page: 594 year: 2022 end-page: 627 publication-title: Chem. Soc. Rev. – volume: 18 start-page: 768 year: 2018 end-page: 778 publication-title: Eng. Life Sci. – volume: 72 start-page: 1181 year: 2009 end-page: 1195 publication-title: Mol. Microbiol. – volume: 56 start-page: 12352 year: 2017 end-page: 12355 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 14 start-page: 3436 year: 2023 publication-title: Nat. Commun. – volume: 18 start-page: 1398 year: 2007 end-page: 1402 publication-title: Tetrahedron: Asymmetry – volume: 147 start-page: 117 year: 2010 end-page: 125 publication-title: J. Biochem. – volume: 549 year: 2023 publication-title: J. Mol. Catal. – volume: 2008 start-page: 3668 year: 2008 end-page: 3672 publication-title: Eur. J. Org. Chem. – volume: 378 year: 2023 publication-title: Philos. Trans. R. Soc. London – ident: e_1_2_8_11_1 doi: 10.2174/092986711794927766 – ident: e_1_2_8_78_1 doi: 10.1039/c2gc16317a – ident: e_1_2_8_85_2 doi: 10.1002/anie.200601574 – ident: e_1_2_8_21_2 doi: 10.1016/j.cbpa.2016.01.002 – ident: e_1_2_8_25_1 doi: 10.1016/j.foodres.2021.110909 – ident: e_1_2_8_84_1 – ident: e_1_2_8_14_1 doi: 10.3390/app11136161 – ident: e_1_2_8_72_1 doi: 10.1002/anie.202407425 – ident: e_1_2_8_62_1 doi: 10.1038/s41467-022-35500-1 – ident: e_1_2_8_67_1 – ident: e_1_2_8_3_1 – ident: e_1_2_8_4_2 doi: 10.1016/j.copbio.2018.11.011 – ident: e_1_2_8_53_1 doi: 10.1038/s41467-017-01659-1 – ident: e_1_2_8_37_1 doi: 10.1016/j.bbrc.2009.06.134 – ident: e_1_2_8_57_1 doi: 10.1007/s00253-010-2576-5 – ident: e_1_2_8_48_1 doi: 10.1002/anie.202308881 – ident: e_1_2_8_77_1 doi: 10.1002/anie.202001870 – ident: e_1_2_8_69_2 doi: 10.3390/antiox11010163 – ident: e_1_2_8_58_1 – ident: e_1_2_8_31_1 doi: 10.1007/s002530051600 – ident: e_1_2_8_13_1 doi: 10.1080/03601230701316465 – ident: e_1_2_8_34_1 doi: 10.1016/j.fgb.2016.07.008 – ident: e_1_2_8_49_1 doi: 10.1002/anie.202215566 – ident: e_1_2_8_55_1 doi: 10.1021/jacs.9b08935 – ident: e_1_2_8_79_1 doi: 10.3762/bjoc.9.262 – ident: e_1_2_8_47_1 doi: 10.1039/C8OB02814A – ident: e_1_2_8_94_1 doi: 10.1016/j.mcat.2023.113451 – ident: e_1_2_8_24_1 doi: 10.1016/j.bioorg.2021.104651 – ident: e_1_2_8_75_1 doi: 10.1002/anie.201510928 – volume: 13 start-page: 14 year: 2010 ident: e_1_2_8_15_1 publication-title: Electron. J. Biotechnol. – ident: e_1_2_8_83_1 doi: 10.1002/anie.202313817 – ident: e_1_2_8_88_1 doi: 10.3390/molecules25071536 – ident: e_1_2_8_91_1 – ident: e_1_2_8_76_1 doi: 10.1039/C9NP00075E – ident: e_1_2_8_28_1 doi: 10.1016/j.tetasy.2009.02.008 – ident: e_1_2_8_89_1 doi: 10.1002/cbic.202100183 – ident: e_1_2_8_33_1 doi: 10.1016/j.jbiotec.2024.03.015 – ident: e_1_2_8_39_1 doi: 10.1002/anie.201705489 – ident: e_1_2_8_66_1 doi: 10.3389/fbioe.2021.705630 – ident: e_1_2_8_68_2 doi: 10.1016/j.cbpa.2014.01.015 – ident: e_1_2_8_12_1 doi: 10.1080/14740338.2022.2047929 – ident: e_1_2_8_93_2 doi: 10.1002/adsc.201801312 – ident: e_1_2_8_1_1 doi: 10.1111/1541-4337.12602 – ident: e_1_2_8_36_1 doi: 10.1016/j.bbrc.2005.07.013 – ident: e_1_2_8_7_2 doi: 10.1007/s13225-013-0265-2 – ident: e_1_2_8_86_2 doi: 10.1002/ejoc.200800261 – ident: e_1_2_8_23_2 doi: 10.1111/ijfs.16829 – ident: e_1_2_8_20_1 – ident: e_1_2_8_70_2 doi: 10.1016/j.biotechadv.2020.107615 – ident: e_1_2_8_64_1 doi: 10.1128/AEM.70.8.4575-4581.2004 – ident: e_1_2_8_6_1 – ident: e_1_2_8_9_2 doi: 10.20307/nps.2020.26.2.118 – ident: e_1_2_8_17_1 – ident: e_1_2_8_29_1 doi: 10.4236/aim.2012.22008 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-023-39108-x – ident: e_1_2_8_65_1 doi: 10.1007/978-3-319-16009-2_13 – ident: e_1_2_8_81_1 doi: 10.1016/j.bcab.2024.103262 – ident: e_1_2_8_40_1 doi: 10.1007/s00253-021-11444-2 – ident: e_1_2_8_71_2 doi: 10.1016/j.sbi.2022.102342 – ident: e_1_2_8_56_1 doi: 10.1021/acs.orglett.3c01924 – ident: e_1_2_8_46_1 doi: 10.1111/j.1365-2958.2009.06717.x – ident: e_1_2_8_16_1 doi: 10.1039/D0NP00077A – ident: e_1_2_8_30_1 doi: 10.4236/abb.2016.711043 – ident: e_1_2_8_92_2 doi: 10.3762/bjoc.14.58 – volume: 146 start-page: 11457 year: 2024 ident: e_1_2_8_63_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_90_1 doi: 10.1007/s00253-021-11337-4 – ident: e_1_2_8_45_1 doi: 10.1128/AEM.01091-18 – volume: 72 start-page: 9227 year: 2024 ident: e_1_2_8_52_1 publication-title: J. Agric. Food Chem. – ident: e_1_2_8_73_1 doi: 10.1007/s10532-011-9521-x – ident: e_1_2_8_59_2 doi: 10.1002/bit.26583 – ident: e_1_2_8_61_1 doi: 10.1016/j.phytochem.2018.07.009 – ident: e_1_2_8_8_2 doi: 10.1007/978-3-319-59542-9_1 – ident: e_1_2_8_22_2 doi: 10.3390/pr10040726 – ident: e_1_2_8_50_1 doi: 10.1098/rstb.2022.0033 – ident: e_1_2_8_18_2 doi: 10.1021/acscentsci.0c01496 – ident: e_1_2_8_87_1 doi: 10.1002/cbic.201300601 – ident: e_1_2_8_38_1 doi: 10.1093/jb/mvp155 – ident: e_1_2_8_41_1 – ident: e_1_2_8_74_1 doi: 10.1016/j.jbiosc.2022.10.001 – ident: e_1_2_8_82_1 doi: 10.1021/jacs.9b01083 – ident: e_1_2_8_32_1 doi: 10.1007/s00253-023-12872-y – volume: 11 start-page: 182 year: 2010 ident: e_1_2_8_10_1 publication-title: Curr. Opin. Investig. Drugs – ident: e_1_2_8_19_2 doi: 10.1039/D1CS00100K – ident: e_1_2_8_54_1 doi: 10.1002/anie.201700565 – ident: e_1_2_8_27_1 doi: 10.1016/j.tetasy.2007.05.036 – ident: e_1_2_8_5_2 doi: 10.1002/elsc.201800039 – ident: e_1_2_8_44_2 doi: 10.1016/j.bbrc.2022.01.072 – ident: e_1_2_8_80_1 doi: 10.1016/j.molcatb.2015.08.002 – ident: e_1_2_8_35_1 doi: 10.1080/14786419.2023.2291819 – ident: e_1_2_8_43_2 doi: 10.1002/ejoc.202101436 – ident: e_1_2_8_51_1 doi: 10.1016/j.enzmictec.2022.110037 – volume: 11 start-page: 1708 year: 2021 ident: e_1_2_8_42_2 publication-title: Biomol. Eng. – ident: e_1_2_8_2_1 doi: 10.1016/j.foodchem.2019.03.091 – ident: e_1_2_8_60_2 doi: 10.1007/s00253-021-11717-w |
SSID | ssj0009633 |
Score | 2.465147 |
SecondaryResourceType | review_article |
Snippet | The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202403010 |
SubjectTerms | Agaricales - chemistry Agaricales - metabolism Aliphatic compounds Alkenes Alkenes - chemistry Alkenes - metabolism Aromatic compounds Biocatalysis Biocatalysts Carboxylic acids Carboxylic Acids - chemistry Carboxylic Acids - metabolism Chemical reactions Chemical synthesis C−H oxidation Enzymes Epoxidation Hydroxylation Ketones Ketones - chemistry Ketones - metabolism Metabolites Mushroom Mushrooms Oxidation-Reduction p450s Redox reactions Reduction |
Title | Mushroom‐Mediated Redox Reactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202403010 https://www.ncbi.nlm.nih.gov/pubmed/39632266 https://www.proquest.com/docview/3154026449 https://www.proquest.com/docview/3146519137 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734fkSrVBQ8pU1289qjFEsR6qFY6C0ku7MIQiq2BfHkT_A3-kvcyTap1YOgl0BIhuzMzux-u9n5BuBS-bGnGVNuiJK5QS64m0UscAMdxrGMRJiUGXKDu6g_Cm7H4fhLFr_lh6g33CgyyvGaAjzLp50laajRiTLJiU_O5ljRgS1CRcMlf5TxLltLPohd4mCtWBs91lkVX52VfkDNVeRaTj29LciqRtsTJ4_t-Sxvy9dvfI7_0WobNhe4tHVtHWkH1rDYhfVuVQ5uDy4G8-kDweyPt_dBWd8DVWuIavJirjY7YroPo97NfbfvLiosuJJHiecm0gx1RNmXM9SZDnNPZhq18pUXKRFnDAXnSgseSSaDBJkMBSppYj4LWaCQH0CjmBR4BC1fM61iVAGaNaMRTjwudYhmfWZAoUrQgavKwumTJdJILWUyS0nptFbagWbVAekioKYpN1DPI_AmHDivHxsT0P-NrMDJnN6hwu7C57EDh7bj6k9x4woGaUYOsNL8v7QhJUKK-u74L0InsMGoVjBt14gmNGbPczw1AGaWn5VO-gkvJuWF |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kHurF9yNataLgKW26m9cepVqqtj2UFryFZHcWQWjFtiCe_An-Rn-JO0mTUj0IegmEZMnO7Mzut5OdbwAuVCNwNGPK9lAy200Et2OfubarvSCQvvDCNEOu2_PbQ_fuwctPE1IuTMYPUQTcyDPS-ZocnALS9QVrqBGKUsmJUC5Nslqlst5En3_dXzBIGfvKqsm7gU0srDlvo8Pqy-2X16UfYHMZu6aLT2sDkrzb2ZmTp9psmtTk2zdGx3_JtQnrc2havcpsaQtWcLQN5WZeEW4HzruzySMh7c_3j25a4gNVtY9q_GquWYLEZBeGrZtBs23PiyzYkvuhY4fSzHbE2pcw1LH2EkfGGrVqKMdXIogZCs6VFtyXTLohMukJVNK4fewxVyHfg9JoPMIDqDY00ypA5aLZNprGocOl9tBs0QwuVCFacJmrOHrOuDSijDWZRSR0VAhtQSUfgWjuU5OIG7TnEH4TFpwVj40K6BdHPMLxjN4hIxANHliwn41c8SlubMGATd8Clur_lz5ExElR3B3-pdEplNuDbifq3Pbuj2CNUelgit6ICpSmLzM8NnhmmpykFvsFnRPpoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6Igvri_VKdOlHwqVuXpJc8yuaYlw0ZDvZW2uQEQdiGW0F88if4G_0lJu3aOX0Q9KVQ2tCc5JzkS9LzfQDnsuY7ihBpuyiIzWJO7cgjzGbK9X3hcTdIM-TaHa_VYzd9t_8liz_jhyg23ExkpOO1CfCRVNUZaai2yWSSGz65NMdqiXkON-INje6MQEq7VyYmz3zbkLDmtI0Oqc6Xn5-WfmDNeeiazj3NdYjyWme_nDxVkklcEa_fCB3_Y9YGrE2Bafky86RNWMDBFqzUcz24bThrJ-NHg7M_3t7bqcAHynIX5fBFX7P0iPEO9JpXD_WWPZVYsAX1AscOhB7rDGdfTFBFyo0dESlUsiYdT3I_IsgplYpTTxDBAiTC5SiFDvrIJUwi3YXFwXCA-1CuKaKkj5KhXjTqwoFDhXJRL9A0KpQBWnCRt3A4ypg0wowzmYTG6LAw2oJS3gHhNKLGIdVYzzHojVtwWjzWTWAOOKIBDhPzjlF25zXqW7CXdVzxKapdQUNNzwKSNv8vdQgNI0Vxd_CXQiewfN9ohnfXndtDWCVGN9hs3fASLE6eEzzSYGYSH6f--gnqxuhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mushroom%E2%80%90Mediated+Redox+Reactions&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Yang%2C+Yan%E2%80%90Long&rft.date=2025-01-09&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=31&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202403010&rft.externalDBID=10.1002%252Fchem.202403010&rft.externalDocID=CHEM202403010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |