On the learning mechanism of adaptive filters

This paper highlights, both analytically and by simulations, some interesting phenomena regarding the behavior of ensemble-average learning curves of adaptive filters that may have gone unnoticed. Among other results, the paper shows that even ensemble-average learning curves of single-tap LMS filte...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 48; no. 6; pp. 1609 - 1625
Main Authors Nascimento, V.H., Sayed, A.H.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper highlights, both analytically and by simulations, some interesting phenomena regarding the behavior of ensemble-average learning curves of adaptive filters that may have gone unnoticed. Among other results, the paper shows that even ensemble-average learning curves of single-tap LMS filters actually exhibit two distinct rates of convergence: one for the initial time instants and another, faster one, for later time instants. In addition, such curves tend to converge faster than predicted by mean-square theory and can converge even when a mean-square stability analysis predicts divergence. These effects tend to be magnified by increasing the step size. Two of the conclusions that follow from this work are (1) the mean-square stability alone may not be the most appropriate performance measure, especially for larger step sizes. A combination of mean-square stability and almost sure (a.s.) stability seems to be more appropriate. (2) Care is needed while interpreting ensemble-average curves for larger step sizes. The curves can lead to erroneous conclusions unless a large number of experiments are averaged (at times of the order of tens of thousands or higher).
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/78.845919