Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate
The pathogenic yeast, Candida albicans, is insensitive to the anti-mitotic drug, benomyl, and to the dihydrofolate reductase inhibitor, methotrexate. Genes responsible for the intrinsic drug resistance were sought by transforming Saccharomyces cerevisiae, a yeast sensitive to both drugs, with genomi...
Saved in:
Published in | Molecular & general genetics Vol. 227; no. 2; pp. 318 - 329 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.06.1991
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The pathogenic yeast, Candida albicans, is insensitive to the anti-mitotic drug, benomyl, and to the dihydrofolate reductase inhibitor, methotrexate. Genes responsible for the intrinsic drug resistance were sought by transforming Saccharomyces cerevisiae, a yeast sensitive to both drugs, with genomic C. albicans libraries and screening on benomyl or methotrexate. Restriction analysis of plasmids isolated from benomyl- and methotrexate-resistant colonies indicated that both phenotypes were encoded by the same DNA fragment. Sequence analysis showed that the fragments were nearly identical and contained a long open reading frame of 1694 bp (ORF1) and a small ORF of 446 bp (ORF2) within ORF1 on the opposite strand. By site-directed mutagenesis, it was shown that ORF1 encoded both phenotypes. The protein had no sequence similarity to any known proteins, including beta-tubulin, dihydrofolate reductase, and the P-glycoprotein of the multi-drug resistance family. The resistance gene was detected in several C. albicans strains and in C. stellatoidea by DNA hybridization and by the polymerase chain reaction. |
---|---|
ISSN: | 0026-8925 1432-1874 |
DOI: | 10.1007/BF00259685 |