Yeast Nucleosome DNA Pattern: Deconvolution from Genome Sequences of S. cerevisiae

Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the chara...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. 22; no. 6; pp. 687 - 693
Main Authors Cohanim, Amir B., Kashi, Yechezkel, Trifonov, Edward N.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Group 01.06.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-1102
1538-0254
DOI:10.1080/07391102.2005.10507035