Selective Hydrogenation of Benzene to Cyclohexene over Monometallic Ru Catalysts: Investigation of ZnO and ZnSO4 as Reaction Additives as Well as Particle Size Effect

Monometallic Ru catalysts with different particle size were prepared via a precipitation method and reduced at different temperatures. In addition, their catalytic activity towards cyclohexene formation from selective hydrogenation of benzene was investigated. With the utilization of ZnO and ZnSO4 a...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 8; no. 5; p. 172
Main Authors Sun, Haijie, Chen, Zhihao, Li, Chenggang, Chen, Lingxia, Li, Yan, Peng, Zhikun, Liu, Zhongyi, Liu, Shouchang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Monometallic Ru catalysts with different particle size were prepared via a precipitation method and reduced at different temperatures. In addition, their catalytic activity towards cyclohexene formation from selective hydrogenation of benzene was investigated. With the utilization of ZnO and ZnSO4 as reaction additives, (Zn(OH)2)3(ZnSO4)(H2O)3 could be generated and chemisorbed on the Ru surface, which played a crucial role on increasing the selectivity to cyclohexene and retarding the catalytic activity towards benzene conversion. Interestingly, without addition of ZnO and ZnSO4, no cyclohexene was observed over all tested Ru catalysts with different particle sizes. This suggested that particle size plays no role in cyclohexene synthesis from selective hydrogenation of benzene over the pure monometallic Ru catalysts in the absence of ZnO and ZnSO4. On the other hand, when both ZnO and ZnSO4 were applied, surface n(Zn2+)/n(Ru) molar ratio increased with increasing particle size of the monometallic Ru catalysts after catalytic experiments, demonstrating that the content of chemisorbed (Zn(OH)2)3(ZnSO4)(H2O)3 on Ru catalysts surface is enhanced under such a circumstance. More importantly, the maximum cyclohexene yield obtained over monometallic Ru catalysts showed a volcanic-type variation with increasing particle size of Ru from 3.6 nm to 5.6 nm. When the particle size of the monometallic Ru catalyst was 4.7 nm, the highest cyclohexene yield of 60.4% was achieved with an optimum n(ZnO)/n(Ru) ratio of 0.19:1 in the presence of 0.62 mol·dm−3 ZnSO4 within 25 min of catalytic experiments at 423 K under 5.0 MPa of H2. In addition, no decrease of catalytic activity towards cyclohexene generation was observed over this catalyst after 10 catalytic experiments without any regeneration.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal8050172