Interacting composite fermions
Even though much of the dramatic physics of two-dimensional electrons in a high magnetic field is explicable in terms of weakly interacting composite fermions (CFs), the inter-CF interaction is responsible for many interesting, non-trivial phenomena. Here, we discuss four examples. (i) At small fill...
Saved in:
Published in | Solid state communications Vol. 117; no. 3; pp. 117 - 122 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
2001
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Even though much of the dramatic physics of two-dimensional electrons in a high magnetic field is explicable in terms of weakly interacting composite fermions (CFs), the inter-CF interaction is responsible for many interesting, non-trivial phenomena. Here, we discuss four examples. (i) At small filling factors, a softening of the roton mode destroys the fractional Hall effect, giving way to the Wigner crystal. (ii) In higher Landau levels, the fractional Hall effect is destroyed due to a collapse of the energy of the neutral exciton. (iii) At
ν=5/2, the Fermi sea of CFs is unstable to Cooper pairing of CFs, thereby opening up a gap and producing a fractional Hall effect. (iv) Prior to the transition into the Wigner crystal, the CF liquid exhibits the Bloch instability into a magnetically ordered, spontaneously broken symmetry phase. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0038-1098 1879-2766 |
DOI: | 10.1016/S0038-1098(00)00440-3 |