Using an Eigenvector Spatial Filtering-Based Spatially Varying Coefficient Model to Analyze the Spatial Heterogeneity of COVID-19 and Its Influencing Factors in Mainland China

The COVID-19 pandemic has led to many deaths and economic disruptions across the world. Several studies have examined the effect of corresponding health risk factors in different places, but the problem of spatial heterogeneity has not been adequately addressed. The purpose of this paper was to expl...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 11; no. 1; p. 67
Main Authors Chen, Meijie, Chen, Yumin, Wilson, John P., Tan, Huangyuan, Chu, Tianyou
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The COVID-19 pandemic has led to many deaths and economic disruptions across the world. Several studies have examined the effect of corresponding health risk factors in different places, but the problem of spatial heterogeneity has not been adequately addressed. The purpose of this paper was to explore how selected health risk factors are related to the pandemic infection rate within different study extents and to reveal the spatial varying characteristics of certain health risk factors. An eigenvector spatial filtering-based spatially varying coefficient model (ESF-SVC) was developed to find out how the influence of selected health risk factors varies across space and time. The ESF-SVC was able to take good control of over-fitting problems compared with ordinary least square (OLS), eigenvector spatial filtering (ESF) and geographically weighted regression (GWR) models, with a higher adjusted R2 and lower cross validation RMSE. The impact of health risk factors varied as the study extent changed: In Hubei province, only population density and wind speed showed significant spatially constant impact; while in mainland China, other factors including migration score, building density, temperature and altitude showed significant spatially varying impact. The influence of migration score was less contributive and less significant in cities around Wuhan than cities further away, while altitude showed a stronger contribution to the decrease of infection rates in high altitude cities. The temperature showed mixed correlation as time passed, with positive and negative coefficients at 2.42 °C and 8.17 °C, respectively. This study could provide a feasible path to improve the model fit by considering the problem of spatial autocorrelation and heterogeneity that exists in COVID-19 modeling. The yielding ESF-SVC coefficients could also provide an intuitive method for discovering the different impacts of influencing factors across space in large study areas. It is hoped that these findings improve public and governmental awareness of potential health risks and therefore influence epidemic control strategies.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi11010067