The Influence of Absolute Mass Loading of Secondary Organic Aerosols on Their Phase State

Absolute secondary organic aerosol (SOA) mass loading (CSOA) is a key parameter in determining partitioning of semi- and intermediate volatility compounds to the particle phase. Its impact on the phase state of SOA, however, has remained largely unexplored. In this study, systematic laboratory chamb...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 9; no. 4; p. 131
Main Authors Jain, Shashank, Fischer, Kevin, Petrucci, Giuseppe
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 31.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Absolute secondary organic aerosol (SOA) mass loading (CSOA) is a key parameter in determining partitioning of semi- and intermediate volatility compounds to the particle phase. Its impact on the phase state of SOA, however, has remained largely unexplored. In this study, systematic laboratory chamber measurements were performed to elucidate the influence of CSOA, ranging from 0.2 to 160 µg m−3, on the phase state of SOA formed by ozonolysis of various precursors, including α-pinene, limonene, cis-3-hexenyl acetate (CHA) and cis-3-hexen-1-ol (HXL). A previously established method to estimate SOA bounce factor (BF, a surrogate for particle viscosity) was utilized to infer particle viscosity as a function of CSOA. Results show that under nominally identical conditions, the maximum BF decreases by approximately 30% at higher CSOA, suggesting a more liquid phase state. With the exception of HXL-SOA (which acted as the negative control), the phase state for all studied SOA precursors varied as a function of CSOA. Furthermore, the BF was found to be the maximum when SOA particle distributions reached a geometric mean particle diameter of 50–60 nm. Experimental results indicate that CSOA is an important parameter impacting the phase state of SOA, reinforcing recent findings that extrapolation of experiments not conducted at atmospherically relevant SOA levels may not yield results that are relevant to the natural environment.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos9040131