Coherent near field optical microscopy
The light scattering from a single resonant molecule, or nano-sized particle located near the tip of an apertureless scanning near-field microscope is studied, and different regimes of scattering are analyzed. The tip enhances the external field, and serves as an efficient transmission `antenna'...
Saved in:
Published in | Optics communications Vol. 174; no. 1; pp. 33 - 41 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.01.2000
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The light scattering from a single resonant molecule, or nano-sized particle located near the tip of an apertureless scanning near-field microscope is studied, and different regimes of scattering are analyzed. The tip enhances the external field, and serves as an efficient transmission `antenna' for the molecular dipole oscillations. The light scattering occurs via two channels: direct scattering from the tip, and tip-mediated molecular scattering. The total detected intensity of the scattered light shows interference of the channels, which we suggest to use for efficient near-field microscopy. At certain detunings from resonances the scanning signal experiences spatial narrowing similar to that one observed in two-photon microscopy, thus allowing for sub-nanometer resolution. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/S0030-4018(99)00696-3 |