Reconfigurable Intelligent Surfaces-Assisted Communications With Discrete Phase Shifts: How Many Quantization Levels Are Required to Achieve Full Diversity?

Due to hardware limitations, the phase shifts of the reflecting elements of reconfigurable intelligent surfaces (RISs) need to be quantized into discrete values. This letter aims to unveil the minimum required number of phase quantization levels <inline-formula> <tex-math notation="LaT...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications letters Vol. 10; no. 2; pp. 358 - 362
Main Authors Xu, Peng, Chen, Gaojie, Yang, Zheng, Renzo, Marco Di
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE comsoc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to hardware limitations, the phase shifts of the reflecting elements of reconfigurable intelligent surfaces (RISs) need to be quantized into discrete values. This letter aims to unveil the minimum required number of phase quantization levels <inline-formula> <tex-math notation="LaTeX">{L} </tex-math></inline-formula> in order to achieve the full diversity order in RIS-assisted wireless communication systems. With the aid of an upper bound of the outage probability, we first prove that the full diversity order is achievable provided that <inline-formula> <tex-math notation="LaTeX">{L} </tex-math></inline-formula> is not less than three. If <inline-formula> <tex-math notation="LaTeX">{L}\,\,= </tex-math></inline-formula> 2, on the other hand, we prove that the achievable diversity order cannot exceed (<inline-formula> <tex-math notation="LaTeX">{N}\,\,+ </tex-math></inline-formula> 1)/2, where <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> is the number of reflecting elements. This is obtained with the aid of a lower bound of the outage probability. Therefore, we prove that the minimum required value of <inline-formula> <tex-math notation="LaTeX">{L} </tex-math></inline-formula> for achieving the full diversity order is <inline-formula> <tex-math notation="LaTeX">{L}\,\,= </tex-math></inline-formula> 3. Simulation results verify the theoretical analysis and the impact of phase quantization levels on RIS-assisted communication systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2020.3031084