Self-tracking, solvent-free low-dimensional polymer electrolyte blends with lithium salts

Solvent-free polymer electrolyte blends of the amphiphilic polyethoxide ( I) and the polytetrahydrofuran copolymer ( II) with LiClO 4 or LiClO 4/LiBF 4 mixture have been prepared. In II A is either CH 2 ( IIC1) or CH 2C(CH 2)CH 2 ( IID4), dc measurements using Li electrodes on the cells (Li |...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 97; pp. 641 - 643
Main Authors Zheng, Y., Chia, F., Ungar, G., Wright, P.V.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Lausanne Elsevier B.V 01.07.2001
Elsevier Sequoia
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solvent-free polymer electrolyte blends of the amphiphilic polyethoxide ( I) and the polytetrahydrofuran copolymer ( II) with LiClO 4 or LiClO 4/LiBF 4 mixture have been prepared. In II A is either CH 2 ( IIC1) or CH 2C(CH 2)CH 2 ( IID4), dc measurements using Li electrodes on the cells (Li | I/ II-Li salt | Li) demonstrate a ‘self-tracking’ process over ca. 24 h during which time conductivities increase from ca. 10 −6 to 10 −3 S cm −1 at 25 and 30°C. The dc results are supported by ac impedance measurements using indium tin oxide (ITO) electrodes in which the complexes undergo transitions at ca. 90°C to give a conductivity after cooling of 6×10 −4 S cm −1 at 20°C with low temperature dependence. Structural analysis and molecular dynamics modelling indicate that the cations occupy unimpeded helices of I and anions are located in the interhelical spaces. Mechanisms of ‘tracking’ involving shear-induced orientation of polymer I by polymer II and the redistribution of ions between I and II following imposition of the field are proposed.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:0378-7753
1873-2755
DOI:10.1016/S0378-7753(01)00747-9