Semi-permeable vesicles produced by microfluidics to tune the phase behaviour of encapsulated macromolecules

[Display omitted] Understanding the dynamics of macromolecular assemblies in solution, such as Liquid-Liquid Phase Separation (LLPS), represents technologic and fundamental challenges in many fields. In cell biology, such dynamics are of great interest, because of their involvement in subcellular pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 580; pp. 709 - 719
Main Authors Cochereau, Rémy, Renard, Denis, Noûs, Camille, Boire, Adeline
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.11.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Understanding the dynamics of macromolecular assemblies in solution, such as Liquid-Liquid Phase Separation (LLPS), represents technologic and fundamental challenges in many fields. In cell biology, such dynamics are of great interest, because of their involvement in subcellular processes. In our study, we aimed to control the assembly of macromolecules in aqueous semi-permeable vesicles, that we named osmosomes, using microfluidics. We developed a microfluidic chip that allows for producting and trapping Giant Unilamellar Vesicles (GUVs) encapsulating macromolecules. This device also allows for modification of the composition of the inner phase and of the membranes of the trapped GUVs. The vesicles are produced from water-in-oil-in-water (w/o/w) double emulsions in less than 20 min after discarding the oil phase. They are highly monodisperse and their diameter can be modulated between 20 and 110 µm by tuning the flow rates of fluid phases. Their unilamellarity is proofed by two techniques: (1) fluorescence quenching experiments and (2) the insertion of the α-hemolysin membrane protein pore. We demonstrate that the internal pH of osmosomes can be tuned in less than 1 min by controlling solvent exchanges through the α-hemolysin pores. The detailed analysis of the exchange kinetics suggests that the microfluidic chip provides an efficient pore formation due to the physical trapping of vesicles and the constant flow rate. Finally, we show a proof of concept for macromolecular assembly within osmosomes by pH-triggered LLPS of wheat proteins within a few minutes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.07.022