Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials

Various porous carbons were prepared by CO 2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO 2 treatment on the...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 46; no. 13; pp. 1718 - 1726
Main Authors Xia, Kaisheng, Gao, Qiuming, Jiang, Jinhua, Hu, Juan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2008
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various porous carbons were prepared by CO 2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO 2 treatment on their pore structures were discussed. Compared to the pristine mesoporous carbons, the samples subjected to CO 2 treatment exhibited remarkable improvement in textural properties. The electrochemical measurement in 6 M KOH electrolyte showed that CO 2 activation leads to better capacitive performances. The carbon CS15A6, which was obtained after CO 2 treatment for 6 h at 950 °C using CMK-3 as the precursor, showed the best electrochemical behavior with a specific gravimetric capacitance of 223 F/g and volumetric capacitance of 54 F/cm 3 at a scan rate of 2 mV/s and 73% retained ratio at 50 mV/s. The good capacitive behavior of CS15A6 may be attributed to the hierarchical pore structure (abundant micropores and interconnected mesopores with the size of 3–4 nm), high surface area (2749 m 2/g), large pore volume (2.09 cm 3/g), as well as well-balanced microporosity and mesoporosity.
AbstractList Various porous carbons were prepared by CO2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO2 treatment on their pore structures were discussed. Compared to the pristine mesoporous carbons, the samples subjected to CO2 treatment exhibited remarkable improvement in textural properties. The electrochemical measurement in 6 M KOH electrolyte showed that CO2 activation leads to better capacitive performances. The carbon CS15A6, which was obtained after CO2 treatment for 6 h at 950 deg C using CMK-3 as the precursor, showed the best electrochemical behavior with a specific gravimetric capacitance of 223 F/g and volumetric capacitance of 54 F/cm3 at a scan rate of 2 mV/s and 73% retained ratio at 50 mV/s. The good capacitive behavior of CS15A6 may be attributed to the hierarchical pore structure (abundant micropores and interconnected mesopores with the size of 3-4 nm), high surface area (2749 m2/g), large pore volume (2.09 cm3/g), as well as well-balanced microporosity and mesoporosity.
Various porous carbons were prepared by CO 2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO 2 treatment on their pore structures were discussed. Compared to the pristine mesoporous carbons, the samples subjected to CO 2 treatment exhibited remarkable improvement in textural properties. The electrochemical measurement in 6 M KOH electrolyte showed that CO 2 activation leads to better capacitive performances. The carbon CS15A6, which was obtained after CO 2 treatment for 6 h at 950 °C using CMK-3 as the precursor, showed the best electrochemical behavior with a specific gravimetric capacitance of 223 F/g and volumetric capacitance of 54 F/cm 3 at a scan rate of 2 mV/s and 73% retained ratio at 50 mV/s. The good capacitive behavior of CS15A6 may be attributed to the hierarchical pore structure (abundant micropores and interconnected mesopores with the size of 3–4 nm), high surface area (2749 m 2/g), large pore volume (2.09 cm 3/g), as well as well-balanced microporosity and mesoporosity.
Author Hu, Juan
Xia, Kaisheng
Jiang, Jinhua
Gao, Qiuming
Author_xml – sequence: 1
  givenname: Kaisheng
  surname: Xia
  fullname: Xia, Kaisheng
– sequence: 2
  givenname: Qiuming
  surname: Gao
  fullname: Gao, Qiuming
  email: qmgao@mail.sic.ac.cn
– sequence: 3
  givenname: Jinhua
  surname: Jiang
  fullname: Jiang, Jinhua
– sequence: 4
  givenname: Juan
  surname: Hu
  fullname: Hu, Juan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20775203$$DView record in Pascal Francis
BookMark eNqFUcFq3DAUFCWFbJL-QQ6-tDc7kmVbdg6FENImEMgld_H8_ES09Vqu5E3p3-ctXnLooTk9hjczMDNn4mQKEwlxqWShpGqutgVC7MNUlFK2hTSFVO0nsVGt0bluO3UiNpI_eVOW-lScpbRlWLWq2ohf954iRHzxCGM2hxj2KVvdUvbHLy8ZhmmJYRxpyHYeY2AOpQwmhpSOyIWYpf1MEWEG9AtDGglZN1C2g4WihzFdiM-OD3053nPx_OPu-fY-f3z6-XB785ijbsySgyEYuo6w02i006bvakmqr6pGmrpu68G5RtWdob5D13ctlgfsHIKqKqPPxbfVdo7h957SYnc-IY0jTMTprK51W0vZMPHrkQiJ07sIE_pk5-h3EP_aUhpTl1Izr1p5nD6lSO6doqQ9DGC3dq3MHgaw0lgegGXX_8i4GVj8oU_w40fi76uYuKhX3sgm9DQhDT5ysXYI_v8Gb69rqTY
CODEN CRBNAH
CitedBy_id crossref_primary_10_1016_j_colsurfa_2013_02_003
crossref_primary_10_1039_c3nr00738c
crossref_primary_10_1016_j_micromeso_2019_05_002
crossref_primary_10_1021_acsomega_9b02243
crossref_primary_10_1088_2053_1591_ab59e7
crossref_primary_10_1016_j_matdes_2017_10_071
crossref_primary_10_1088_0957_4484_23_48_485404
crossref_primary_10_1016_j_matlet_2010_09_049
crossref_primary_10_1039_D1NJ05800B
crossref_primary_10_1007_s12649_019_00927_z
crossref_primary_10_1021_acssuschemeng_8b05403
crossref_primary_10_1007_s10008_010_1258_7
crossref_primary_10_1016_j_jechem_2016_08_005
crossref_primary_10_1039_C1CS15060J
crossref_primary_10_1039_C4RA00756E
crossref_primary_10_1021_acsami_3c14059
crossref_primary_10_1007_s11581_020_03487_8
crossref_primary_10_1016_j_ijhydene_2016_05_090
crossref_primary_10_1039_c2jm33889k
crossref_primary_10_1039_C6TA06840E
crossref_primary_10_1016_j_electacta_2016_08_045
crossref_primary_10_1016_j_apsusc_2014_04_160
crossref_primary_10_1016_j_electacta_2013_09_006
crossref_primary_10_1038_s41598_017_01873_3
crossref_primary_10_20517_energymater_2024_164
crossref_primary_10_1016_j_jpowsour_2013_01_112
crossref_primary_10_1007_s10854_017_7705_9
crossref_primary_10_1002_chem_202003253
crossref_primary_10_1007_s11244_009_9407_x
crossref_primary_10_1016_j_electacta_2018_12_160
crossref_primary_10_1016_j_apsusc_2013_11_051
crossref_primary_10_1002_slct_201903610
crossref_primary_10_1016_j_ensm_2018_04_031
crossref_primary_10_1016_j_est_2020_101672
crossref_primary_10_1039_c3ra41250d
crossref_primary_10_1039_C6TA00738D
crossref_primary_10_1002_er_3939
crossref_primary_10_1021_acsaem_8b01589
crossref_primary_10_1016_j_carbon_2015_06_019
crossref_primary_10_1016_j_colcom_2021_100577
crossref_primary_10_1039_C5GC00523J
crossref_primary_10_1007_s10008_016_3233_4
crossref_primary_10_1021_la4026969
crossref_primary_10_1016_j_ijhydene_2013_05_114
crossref_primary_10_1007_s40843_020_1532_0
crossref_primary_10_1016_j_cattod_2014_03_019
crossref_primary_10_1002_celc_201901586
crossref_primary_10_1016_j_electacta_2013_10_161
crossref_primary_10_1016_j_cap_2016_03_019
crossref_primary_10_1016_j_est_2018_07_007
crossref_primary_10_1021_nn400566d
crossref_primary_10_1021_acsnano_8b00426
crossref_primary_10_1016_j_electacta_2013_09_121
crossref_primary_10_1155_2011_615164
crossref_primary_10_1039_C6RA01565D
crossref_primary_10_1016_j_carres_2020_107986
crossref_primary_10_1039_C4RA05881J
crossref_primary_10_1039_C3TA15280D
crossref_primary_10_1002_bkcs_10981
crossref_primary_10_1016_j_jallcom_2019_07_125
crossref_primary_10_3390_mi13060916
crossref_primary_10_20964_2019_04_23
crossref_primary_10_1016_j_micromeso_2014_04_055
crossref_primary_10_1038_srep34590
crossref_primary_10_3390_polym13132048
crossref_primary_10_1021_acssuschemeng_7b00551
crossref_primary_10_1002_slct_201900366
crossref_primary_10_1039_C4TA01468E
crossref_primary_10_1002_adma_201201715
crossref_primary_10_3390_nano9091189
crossref_primary_10_1016_j_matchar_2022_112273
crossref_primary_10_1016_j_carbon_2017_03_027
crossref_primary_10_1016_j_micromeso_2011_06_002
crossref_primary_10_1016_j_electacta_2016_08_099
crossref_primary_10_1016_S1872_5805_19_30021_6
crossref_primary_10_1021_acs_energyfuels_1c02033
crossref_primary_10_1021_acsomega_9b00148
crossref_primary_10_1038_srep02925
crossref_primary_10_1002_cssc_201900267
crossref_primary_10_1016_j_jpowsour_2017_08_022
crossref_primary_10_1016_j_electacta_2013_10_060
crossref_primary_10_1016_j_nanoen_2017_10_019
crossref_primary_10_1039_C6TB01774F
crossref_primary_10_1021_la9016646
crossref_primary_10_1007_s11356_024_33109_z
crossref_primary_10_1021_acsami_4c02762
crossref_primary_10_1016_j_carbon_2016_06_003
crossref_primary_10_1039_D1NJ01570B
crossref_primary_10_1016_j_jallcom_2017_06_068
crossref_primary_10_1016_j_carbon_2017_08_013
crossref_primary_10_1016_j_est_2022_105667
crossref_primary_10_1016_j_matlet_2016_12_029
crossref_primary_10_1149_2_0191914jes
crossref_primary_10_1016_j_jelechem_2014_07_014
crossref_primary_10_1016_j_synthmet_2014_04_014
crossref_primary_10_1016_j_matlet_2012_07_093
crossref_primary_10_1016_j_jcis_2024_02_041
crossref_primary_10_1002_aesr_202100070
crossref_primary_10_1016_j_jpowsour_2015_04_131
crossref_primary_10_1002_er_8119
crossref_primary_10_1039_C7RA02867A
crossref_primary_10_1039_C8RA00858B
crossref_primary_10_1002_asia_202001342
crossref_primary_10_1016_j_electacta_2014_11_161
crossref_primary_10_1016_j_micromeso_2014_02_008
crossref_primary_10_1016_j_nanoen_2015_12_012
crossref_primary_10_1016_j_apsusc_2020_146728
crossref_primary_10_1039_D0CS00059K
crossref_primary_10_1016_j_micromeso_2024_113294
crossref_primary_10_1016_j_carbon_2017_05_092
crossref_primary_10_1016_j_jpcs_2009_12_009
crossref_primary_10_1007_s11664_018_6801_9
crossref_primary_10_1080_15567036_2024_2303390
crossref_primary_10_1021_acs_energyfuels_0c03854
crossref_primary_10_1016_S1872_5805_13_60074_8
crossref_primary_10_1002_adfm_201200591
crossref_primary_10_1002_chem_201503590
crossref_primary_10_1007_s10008_012_1779_3
crossref_primary_10_1039_D1NR05681F
crossref_primary_10_1049_mnl_2010_0001
crossref_primary_10_1039_c0cc00449a
crossref_primary_10_1007_s10934_021_01149_2
crossref_primary_10_1557_JMR_2010_0186
crossref_primary_10_1007_s10853_009_3710_6
crossref_primary_10_1016_j_jpowsour_2019_227497
crossref_primary_10_1016_j_carbon_2015_05_040
crossref_primary_10_1039_D1NA00008J
crossref_primary_10_1002_slct_202001879
crossref_primary_10_1039_c1ra00664a
crossref_primary_10_1016_j_carbon_2016_06_009
crossref_primary_10_1111_ijac_14328
crossref_primary_10_1039_C4RA06418F
crossref_primary_10_1016_j_micromeso_2010_04_021
crossref_primary_10_1016_j_mset_2023_07_006
crossref_primary_10_1016_j_jelechem_2015_10_016
crossref_primary_10_1016_j_electacta_2016_10_182
crossref_primary_10_1016_j_matdes_2016_08_070
crossref_primary_10_1016_j_jelechem_2018_11_032
crossref_primary_10_1016_j_diamond_2020_107985
crossref_primary_10_1016_j_est_2019_101174
crossref_primary_10_1007_s40243_024_00294_3
crossref_primary_10_1016_j_carbon_2012_08_007
crossref_primary_10_1016_j_jtice_2023_104917
crossref_primary_10_1016_j_scriptamat_2009_08_009
crossref_primary_10_1039_c3ta12252b
crossref_primary_10_1039_C6TA11057F
crossref_primary_10_1021_jp106205n
crossref_primary_10_1016_j_jelechem_2020_114899
crossref_primary_10_1016_j_biteb_2022_101187
crossref_primary_10_1016_j_matlet_2009_03_008
crossref_primary_10_1016_j_cej_2021_130047
crossref_primary_10_1039_C5TA04125B
crossref_primary_10_1016_j_jallcom_2018_11_216
crossref_primary_10_1016_j_carbon_2021_05_006
crossref_primary_10_20964_2018_03_43
crossref_primary_10_1016_j_cplett_2020_137325
crossref_primary_10_1016_j_micromeso_2018_09_023
crossref_primary_10_1039_C4TA01413H
crossref_primary_10_5658_WOOD_2021_49_4_299
crossref_primary_10_1007_s10450_019_00089_3
crossref_primary_10_1021_acsami_5b04094
crossref_primary_10_1039_C4TA03724C
crossref_primary_10_1016_j_est_2024_112729
crossref_primary_10_1038_s41598_018_21082_w
crossref_primary_10_1039_C5CS00715A
crossref_primary_10_1021_acs_iecr_2c02815
crossref_primary_10_1039_C5RA05688H
crossref_primary_10_1016_j_electacta_2017_04_034
crossref_primary_10_1016_j_cej_2017_03_091
crossref_primary_10_1039_C5EE03109E
crossref_primary_10_1016_j_micromeso_2016_09_015
crossref_primary_10_1134_S1023193523050038
crossref_primary_10_1016_j_jpowsour_2010_09_010
crossref_primary_10_1016_j_micromeso_2012_02_043
crossref_primary_10_1039_C5TA06372H
crossref_primary_10_1016_j_ceramint_2016_12_090
crossref_primary_10_1016_j_jpowsour_2012_02_041
crossref_primary_10_1039_C5TA05947J
crossref_primary_10_1016_j_electacta_2018_04_214
crossref_primary_10_1007_s42823_023_00670_5
crossref_primary_10_1039_C7NJ00679A
crossref_primary_10_1002_cssc_201100645
crossref_primary_10_1039_c0jm03175e
crossref_primary_10_1016_j_fuproc_2009_08_020
crossref_primary_10_3390_ma13235434
crossref_primary_10_1002_cssc_201301408
crossref_primary_10_1007_s10934_017_0403_4
crossref_primary_10_1021_acssuschemeng_8b05024
crossref_primary_10_1016_j_carbon_2010_06_008
crossref_primary_10_1021_ef901447y
crossref_primary_10_1016_j_carbon_2013_04_011
crossref_primary_10_1016_j_jpowsour_2021_229618
crossref_primary_10_1016_j_cej_2023_144785
crossref_primary_10_1021_acs_energyfuels_1c04283
crossref_primary_10_1016_j_matchemphys_2022_126037
crossref_primary_10_1039_C7RA04075J
crossref_primary_10_1016_j_ensm_2019_12_015
crossref_primary_10_1021_acsami_1c15147
crossref_primary_10_1002_app_45309
crossref_primary_10_1039_c0cp02281k
crossref_primary_10_1016_j_electacta_2012_11_067
crossref_primary_10_1039_c3ra44465a
crossref_primary_10_1002_adfm_201902564
crossref_primary_10_1016_j_nanoen_2018_01_042
crossref_primary_10_1039_C7SE00099E
crossref_primary_10_1016_j_jpowsour_2016_02_068
crossref_primary_10_1016_j_carbon_2021_08_022
crossref_primary_10_1016_j_chroma_2018_03_019
crossref_primary_10_1016_j_jmst_2016_03_014
crossref_primary_10_1039_D1TA03748J
crossref_primary_10_1021_cm501186e
crossref_primary_10_1051_epjconf_20137902006
crossref_primary_10_1016_j_apenergy_2015_01_141
crossref_primary_10_1039_C9NJ01340G
crossref_primary_10_1016_j_jpowsour_2014_06_017
crossref_primary_10_1016_j_micromeso_2015_06_017
crossref_primary_10_1016_j_jelechem_2014_09_011
crossref_primary_10_3390_nano8040181
crossref_primary_10_1093_nsr_nwx009
crossref_primary_10_1002_bkcs_12548
crossref_primary_10_1016_j_jpowsour_2017_04_092
crossref_primary_10_1021_acsami_9b15058
crossref_primary_10_1063_1_4979466
crossref_primary_10_1149_2_0331603jes
crossref_primary_10_1016_j_mseb_2020_114838
crossref_primary_10_1016_j_jpowsour_2016_08_011
crossref_primary_10_1149_2_061204jes
crossref_primary_10_1039_c3cc45055d
crossref_primary_10_1088_2631_7990_ace66a
crossref_primary_10_1016_j_scitotenv_2019_05_150
crossref_primary_10_1016_j_jmrt_2020_01_022
crossref_primary_10_1039_C6RA08903H
crossref_primary_10_1016_j_fuproc_2021_107055
crossref_primary_10_1002_mame_202000168
crossref_primary_10_1016_j_jpowsour_2012_03_053
crossref_primary_10_1007_s10008_013_2328_4
crossref_primary_10_1021_acsami_8b07353
crossref_primary_10_1038_s41598_023_40176_8
crossref_primary_10_1039_D1NJ02970C
crossref_primary_10_1016_S1872_5805_11_60076_0
crossref_primary_10_3389_fmats_2019_00115
crossref_primary_10_1039_b820412h
crossref_primary_10_1039_C7TA00162B
crossref_primary_10_1007_s10853_014_8454_2
crossref_primary_10_1016_j_carbon_2010_08_056
crossref_primary_10_1016_j_carbon_2010_08_055
crossref_primary_10_1007_s10853_016_9870_2
crossref_primary_10_1039_C6TA07898B
crossref_primary_10_1021_acsanm_4c00922
crossref_primary_10_1016_j_est_2025_115380
crossref_primary_10_1051_matecconf_20166204003
crossref_primary_10_1016_j_ceramint_2022_04_107
crossref_primary_10_1002_smll_202500421
crossref_primary_10_20964_2016_07_27
crossref_primary_10_1134_S0036024421040191
crossref_primary_10_1016_j_jpowsour_2013_12_091
crossref_primary_10_1016_j_est_2020_102180
crossref_primary_10_1016_S1872_5805_08_60048_7
crossref_primary_10_1002_ange_201509054
crossref_primary_10_1039_C4RA09084E
crossref_primary_10_1021_acsami_6b10893
crossref_primary_10_1039_D2SE01701F
crossref_primary_10_1016_j_jallcom_2017_04_066
crossref_primary_10_1016_j_jcis_2017_10_093
crossref_primary_10_1016_j_jpowsour_2016_08_114
crossref_primary_10_1021_acssuschemeng_3c01468
crossref_primary_10_1007_s10450_020_00228_1
crossref_primary_10_1007_s42823_020_00149_7
crossref_primary_10_1016_j_micromeso_2019_109954
crossref_primary_10_1016_j_ensm_2015_09_001
crossref_primary_10_1016_j_micromeso_2014_08_058
crossref_primary_10_1016_j_est_2018_04_014
crossref_primary_10_1039_C4TA02959C
crossref_primary_10_1016_j_electacta_2014_07_125
crossref_primary_10_1016_j_micromeso_2011_10_023
crossref_primary_10_1002_fuce_200900198
crossref_primary_10_1007_s10008_012_1947_5
crossref_primary_10_1007_s11696_024_03699_6
crossref_primary_10_1134_S1023193524700356
crossref_primary_10_1016_S1003_6326_14_63499_3
crossref_primary_10_1016_j_jelechem_2021_115632
crossref_primary_10_1149_2_1131913jes
crossref_primary_10_1016_j_est_2018_04_006
crossref_primary_10_1016_j_carbon_2013_07_092
crossref_primary_10_1038_srep05545
crossref_primary_10_1016_j_carbon_2012_12_030
crossref_primary_10_1007_s11705_018_1727_6
crossref_primary_10_1039_C6RA27127H
crossref_primary_10_1002_ente_201800281
crossref_primary_10_1016_j_cej_2017_07_118
crossref_primary_10_1016_j_micromeso_2021_111516
crossref_primary_10_1016_j_jpowsour_2014_06_100
crossref_primary_10_1149_1_3490638
crossref_primary_10_1016_j_carbon_2012_04_045
crossref_primary_10_1016_j_colsurfa_2014_01_057
crossref_primary_10_1016_j_est_2022_105913
crossref_primary_10_1016_j_ijbiomac_2019_12_187
crossref_primary_10_1016_j_est_2022_105912
crossref_primary_10_1038_s41598_021_81759_7
crossref_primary_10_1016_j_micromeso_2013_06_028
crossref_primary_10_1007_s10008_010_1130_9
crossref_primary_10_3103_S0361521923010056
crossref_primary_10_1016_j_micromeso_2011_10_004
crossref_primary_10_1016_j_electacta_2015_09_038
crossref_primary_10_3390_nano11030747
crossref_primary_10_1039_C6TA01314G
crossref_primary_10_1016_j_electacta_2015_01_122
crossref_primary_10_1016_j_micromeso_2016_12_013
crossref_primary_10_1016_j_jiec_2016_09_026
crossref_primary_10_7317_pk_2012_36_3_321
crossref_primary_10_1039_C9RA09141F
crossref_primary_10_1016_j_micromeso_2015_02_014
crossref_primary_10_1557_jmr_2016_88
crossref_primary_10_1007_s42791_019_0006_0
crossref_primary_10_1002_er_4103
crossref_primary_10_1016_j_compositesb_2017_01_041
crossref_primary_10_1016_j_jcis_2019_02_024
crossref_primary_10_1016_j_jcis_2017_07_081
crossref_primary_10_1016_j_electacta_2015_10_016
crossref_primary_10_1016_j_micromeso_2009_12_007
crossref_primary_10_1016_j_cej_2017_07_139
crossref_primary_10_1039_C4RA14395G
crossref_primary_10_1108_PRT_02_2015_0017
crossref_primary_10_1016_j_electacta_2015_12_081
crossref_primary_10_1016_j_micromeso_2012_04_013
crossref_primary_10_1016_j_elecom_2013_09_010
crossref_primary_10_1002_er_5548
crossref_primary_10_1007_s11771_009_0015_5
crossref_primary_10_1016_j_jpowsour_2012_05_090
crossref_primary_10_1016_j_jpowsour_2018_06_004
crossref_primary_10_1016_j_vacuum_2014_05_019
crossref_primary_10_1016_j_jpowsour_2013_04_112
crossref_primary_10_1038_s41598_017_11229_6
crossref_primary_10_1039_C6CS00829A
crossref_primary_10_1016_j_micromeso_2012_03_031
crossref_primary_10_1016_j_electacta_2011_10_067
crossref_primary_10_1246_bcsj_20160137
crossref_primary_10_1016_j_cej_2020_124645
crossref_primary_10_1016_j_crcon_2024_100237
crossref_primary_10_1149_2_0121814jes
crossref_primary_10_1016_j_eurpolymj_2024_113519
crossref_primary_10_1039_C5TA10552H
crossref_primary_10_1016_j_ccr_2020_213441
crossref_primary_10_1016_j_jpowsour_2012_12_072
crossref_primary_10_1002_adma_201100984
crossref_primary_10_1016_S1872_5805_15_60180_9
crossref_primary_10_59761_RCR5080
crossref_primary_10_1002_aenm_201500771
crossref_primary_10_1021_acsami_6b02404
crossref_primary_10_31857_S0424857023050043
crossref_primary_10_1016_j_fuproc_2014_12_048
crossref_primary_10_1039_C6RA17279B
crossref_primary_10_1016_j_electacta_2023_141830
crossref_primary_10_1016_j_jpowsour_2012_11_028
crossref_primary_10_1039_c3cp52736k
crossref_primary_10_1016_j_jallcom_2023_169365
crossref_primary_10_1016_j_jelechem_2019_05_004
crossref_primary_10_1016_j_apsusc_2020_148565
crossref_primary_10_1039_C7NR05647H
crossref_primary_10_1016_j_jiec_2016_08_002
crossref_primary_10_1002_celc_202000870
crossref_primary_10_1016_j_electacta_2013_07_180
crossref_primary_10_1016_j_ijhydene_2020_10_037
crossref_primary_10_1016_j_materresbull_2011_12_028
crossref_primary_10_1016_j_est_2019_100988
crossref_primary_10_1016_j_jpowsour_2012_11_054
crossref_primary_10_1016_j_pnsc_2012_11_001
crossref_primary_10_1039_C0JM02044C
crossref_primary_10_1039_C5RA06697B
crossref_primary_10_1002_advs_202103953
crossref_primary_10_1007_s40820_018_0217_1
crossref_primary_10_1038_s41598_020_63204_3
crossref_primary_10_1039_C5TA09210H
crossref_primary_10_1016_j_cej_2013_03_090
crossref_primary_10_1016_j_micromeso_2013_05_024
crossref_primary_10_1016_j_jpowsour_2017_01_095
crossref_primary_10_1002_pat_4273
crossref_primary_10_1016_j_electacta_2014_09_036
crossref_primary_10_1016_j_matlet_2010_12_042
crossref_primary_10_1016_j_carbon_2020_01_093
crossref_primary_10_1039_C4TA00778F
crossref_primary_10_1016_j_carbon_2012_11_049
crossref_primary_10_1016_j_jpowsour_2014_07_115
crossref_primary_10_1002_app_46685
crossref_primary_10_1016_j_renene_2020_08_092
crossref_primary_10_1007_s10008_017_3722_0
crossref_primary_10_1016_j_diamond_2018_06_018
crossref_primary_10_1002_smll_202004142
crossref_primary_10_1021_acs_nanolett_2c04320
crossref_primary_10_1002_slct_201701874
crossref_primary_10_1039_B917960G
crossref_primary_10_1021_acsanm_0c00579
crossref_primary_10_1039_C6NJ04123J
crossref_primary_10_1016_j_electacta_2012_04_007
crossref_primary_10_1016_j_jcis_2018_01_020
crossref_primary_10_1039_C6RA16608C
crossref_primary_10_1016_j_jallcom_2011_04_152
crossref_primary_10_1016_j_pmatsci_2024_101408
crossref_primary_10_1039_c1ra00608h
crossref_primary_10_1016_j_jpowsour_2020_228303
crossref_primary_10_1021_acsami_5b06698
crossref_primary_10_1016_j_apsusc_2021_149726
crossref_primary_10_1134_S0036024420040251
crossref_primary_10_1016_j_ijhydene_2017_11_091
crossref_primary_10_1039_C4NJ01251H
crossref_primary_10_1016_j_apsusc_2017_06_279
crossref_primary_10_1016_j_carbon_2015_12_068
crossref_primary_10_1016_j_carbon_2009_04_021
crossref_primary_10_1016_j_electacta_2015_11_003
crossref_primary_10_1016_j_carbon_2012_04_024
crossref_primary_10_1002_ente_202402056
crossref_primary_10_1039_C8QM00641E
crossref_primary_10_1016_j_jelechem_2020_114674
crossref_primary_10_1016_j_surfin_2023_103127
crossref_primary_10_1016_j_jhazmat_2020_124456
crossref_primary_10_1007_s10853_016_0536_x
crossref_primary_10_1016_j_electacta_2015_05_088
crossref_primary_10_1016_j_colsurfa_2015_08_030
crossref_primary_10_1016_j_electacta_2016_05_004
crossref_primary_10_1021_am4044344
crossref_primary_10_1088_0957_4484_26_30_304004
crossref_primary_10_1002_anie_201509054
crossref_primary_10_1016_j_electacta_2017_07_137
crossref_primary_10_1016_j_electacta_2009_12_098
crossref_primary_10_1016_j_jallcom_2024_175586
crossref_primary_10_1021_acsami_6b13597
crossref_primary_10_1016_j_jpowsour_2009_11_059
crossref_primary_10_1016_j_jcis_2021_05_162
crossref_primary_10_1016_j_carbon_2024_119372
crossref_primary_10_1016_j_jiec_2023_12_030
crossref_primary_10_1016_j_electacta_2014_11_075
crossref_primary_10_1039_C7TA08520F
crossref_primary_10_1016_j_jpowsour_2020_228922
crossref_primary_10_1021_acs_energyfuels_2c03487
crossref_primary_10_1016_j_cplett_2011_05_042
crossref_primary_10_1039_c0nr00594k
crossref_primary_10_1039_D2RE00003B
crossref_primary_10_1016_j_jpowsour_2014_09_130
crossref_primary_10_2139_ssrn_4117386
crossref_primary_10_1039_C5RA21431A
crossref_primary_10_1016_j_electacta_2016_05_013
crossref_primary_10_1016_j_electacta_2016_05_133
crossref_primary_10_1039_C6RA02748B
crossref_primary_10_1016_j_electacta_2012_05_004
crossref_primary_10_1016_j_electacta_2011_07_139
crossref_primary_10_1016_j_est_2025_115964
crossref_primary_10_1039_C7TA01424D
crossref_primary_10_1002_asia_201402338
crossref_primary_10_1016_j_biombioe_2021_106206
crossref_primary_10_1016_j_carbon_2017_07_007
crossref_primary_10_1016_j_jiec_2019_06_036
crossref_primary_10_1021_acs_langmuir_4c03428
crossref_primary_10_1016_j_carbon_2015_04_025
crossref_primary_10_1038_s41598_024_53241_7
crossref_primary_10_1039_D1TA10459D
crossref_primary_10_1021_ef3009234
crossref_primary_10_5229_JECST_2015_6_3_87
crossref_primary_10_1016_j_carbon_2009_02_012
crossref_primary_10_1007_s10008_018_4037_5
crossref_primary_10_1016_j_micromeso_2024_113011
crossref_primary_10_1088_1361_6633_aab560
crossref_primary_10_1016_j_colsurfa_2021_126982
crossref_primary_10_1016_j_jpowsour_2013_01_169
crossref_primary_10_1007_s10008_015_2976_7
crossref_primary_10_1002_fuce_201200025
crossref_primary_10_1021_acsaem_1c03204
crossref_primary_10_1016_j_compositesb_2019_107373
crossref_primary_10_1021_nn500497k
crossref_primary_10_1021_am504564q
crossref_primary_10_1002_asia_200900113
crossref_primary_10_1016_j_micromeso_2014_09_006
crossref_primary_10_1002_asia_201900318
crossref_primary_10_1007_s11706_014_0271_7
crossref_primary_10_1039_C9NJ02958C
crossref_primary_10_1016_j_electacta_2016_11_177
crossref_primary_10_1039_C5RA26263A
crossref_primary_10_1021_acs_energyfuels_3c03213
crossref_primary_10_1016_j_electacta_2018_08_109
crossref_primary_10_1016_j_aca_2017_12_007
crossref_primary_10_1016_j_carbon_2010_10_025
crossref_primary_10_1039_C8RA07308B
crossref_primary_10_1016_j_fuproc_2014_04_012
crossref_primary_10_1007_s11705_016_1578_y
crossref_primary_10_1007_s10853_018_2100_3
crossref_primary_10_1007_s10934_018_0577_4
crossref_primary_10_1016_j_jallcom_2023_170719
crossref_primary_10_1016_j_est_2020_101735
crossref_primary_10_1021_acs_energyfuels_1c01449
crossref_primary_10_1039_C6RA18725K
crossref_primary_10_1080_10643389_2020_1780102
crossref_primary_10_1016_j_electacta_2016_07_069
crossref_primary_10_1016_j_jpcs_2023_111318
crossref_primary_10_1016_j_scriptamat_2009_08_040
crossref_primary_10_1039_C6NR04130B
crossref_primary_10_1016_j_colsurfa_2020_125599
crossref_primary_10_1039_C5RA07807E
crossref_primary_10_1016_j_electacta_2016_11_067
crossref_primary_10_33961_JECST_2015_6_3_87
crossref_primary_10_1039_C6TA02673G
crossref_primary_10_1016_j_electacta_2018_08_137
crossref_primary_10_1007_s10008_017_3631_2
crossref_primary_10_1016_j_cej_2019_02_191
crossref_primary_10_1016_j_jallcom_2021_161014
crossref_primary_10_1016_j_jallcom_2021_163557
crossref_primary_10_1016_j_jpowsour_2017_07_054
crossref_primary_10_1021_acssuschemeng_8b04919
crossref_primary_10_1016_j_jelechem_2020_114353
crossref_primary_10_1039_C6CC05921J
crossref_primary_10_1016_j_synthmet_2021_116806
crossref_primary_10_1002_smll_201601722
crossref_primary_10_1016_j_colsurfa_2012_01_002
crossref_primary_10_1016_j_carbon_2018_08_010
crossref_primary_10_1021_acsomega_3c08952
crossref_primary_10_1007_s10854_021_06986_0
crossref_primary_10_1016_j_cej_2011_12_069
crossref_primary_10_1016_j_carbon_2018_09_061
crossref_primary_10_1002_smll_202400558
crossref_primary_10_1021_acs_energyfuels_2c01263
crossref_primary_10_1016_j_carbon_2015_01_001
crossref_primary_10_1186_s11671_024_04087_5
crossref_primary_10_1021_am5087374
crossref_primary_10_5004_dwt_2018_22168
crossref_primary_10_1007_s00289_022_04577_5
crossref_primary_10_1016_j_ensm_2021_05_032
crossref_primary_10_1016_j_surfcoat_2018_06_012
crossref_primary_10_1016_j_jpowsour_2019_227402
crossref_primary_10_1039_c0jm03793a
crossref_primary_10_5004_dwt_2021_27521
crossref_primary_10_14478_ace_2015_1065
crossref_primary_10_1016_j_apsusc_2012_03_009
crossref_primary_10_1016_j_apsusc_2014_07_144
crossref_primary_10_1007_s11814_014_0215_z
crossref_primary_10_1016_j_jallcom_2021_159393
crossref_primary_10_1038_s41467_020_20352_4
crossref_primary_10_1016_j_electacta_2016_05_020
crossref_primary_10_1016_j_jpowsour_2017_05_109
crossref_primary_10_1039_C5TA04632G
crossref_primary_10_1016_j_jece_2019_103066
crossref_primary_10_1002_adfm_201805898
crossref_primary_10_1016_j_cej_2017_12_019
crossref_primary_10_1021_ie501944r
crossref_primary_10_1016_j_carbon_2013_07_100
crossref_primary_10_4028_www_scientific_net_MSF_743_744_20
crossref_primary_10_1039_C6RA11460A
crossref_primary_10_1016_j_jechem_2024_11_023
crossref_primary_10_1246_cl_2009_918
crossref_primary_10_1016_j_electacta_2015_02_218
crossref_primary_10_1039_C6TA07927J
crossref_primary_10_1016_j_jpowsour_2015_11_099
crossref_primary_10_1039_B915903G
crossref_primary_10_1016_j_est_2018_06_016
crossref_primary_10_1039_D0EE02649B
crossref_primary_10_1016_j_jechem_2019_12_014
crossref_primary_10_1016_j_jelechem_2015_12_001
crossref_primary_10_1039_C5RA25932K
crossref_primary_10_3390_nano10112163
crossref_primary_10_3740_MRSK_2023_33_10_430
crossref_primary_10_1016_j_nanoen_2014_12_014
crossref_primary_10_1021_acsami_8b11399
crossref_primary_10_31857_S002311772301005X
crossref_primary_10_1002_celc_201800776
crossref_primary_10_1016_j_cattod_2013_11_011
crossref_primary_10_1039_C6TA08169J
crossref_primary_10_1016_j_ijhydene_2020_12_049
crossref_primary_10_1016_j_carbon_2016_10_016
crossref_primary_10_1039_C8NJ02404A
Cites_doi 10.1016/j.jpowsour.2004.02.013
10.1016/j.electacta.2006.03.005
10.1016/j.carbon.2007.06.002
10.1126/science.1132195
10.1002/adma.200501576
10.1002/(SICI)1521-4095(200003)12:5<359::AID-ADMA359>3.0.CO;2-1
10.1002/adfm.200600961
10.1039/a906872d
10.1016/j.carbon.2004.12.028
10.1016/j.mseb.2003.10.096
10.1021/ja067149g
10.1016/S0008-6223(03)00141-6
10.1016/j.electacta.2003.08.026
10.1002/adma.200600445
10.1016/S0378-7753(98)00038-X
10.1016/j.jpcs.2003.10.024
10.1021/cr020730k
10.1016/j.carbon.2005.07.029
10.1021/cm049337g
10.1016/j.carbon.2004.10.020
10.1016/j.carbon.2006.05.022
10.1002/anie.200702721
10.1016/j.micromeso.2006.07.021
10.1016/S0378-7753(03)00459-2
10.1021/jp060110d
10.1016/S0378-7753(03)00590-1
10.1016/j.electacta.2006.09.063
10.1016/j.carbon.2005.01.001
10.1021/jp056754n
10.1016/S0378-7753(03)00439-7
10.1016/S0008-6223(00)00183-4
10.1016/j.carbon.2004.10.044
10.1126/science.279.5350.548
10.1016/S0008-6223(02)00191-4
10.1016/j.carbon.2005.12.012
10.1016/j.electacta.2004.11.027
10.1021/jp0572683
10.1016/S0013-4686(97)00082-0
10.1016/j.ijhydene.2007.08.019
10.1039/b618139m
10.1021/cm062329a
10.1021/jp067009t
10.1021/jp991673a
10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
ContentType Journal Article
Copyright 2008 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8FD
JG9
DOI 10.1016/j.carbon.2008.07.018
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 1726
ExternalDocumentID 20775203
10_1016_j_carbon_2008_07_018
S0008622308003710
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
8FD
JG9
ID FETCH-LOGICAL-c367t-a7ead99ec93c73f37b950e1b446075585dff61597eb9cfb98c2f615ffca14473
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Thu Jul 10 17:52:06 EDT 2025
Mon Jul 21 09:11:38 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 01:14:10 EDT 2025
Fri Feb 23 02:28:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Potassium hydroxide
Micropore
Pore structure
Porous materials
Activation
XRD
Nitrogen
Carbon
Precursor
Mesoporosity
Electrodes
Sorption
Microporosity
Transmission electron microscopy
Adsorption
Pore
Electrochemistry
Capacitance
Electrolytes
Surface area
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-a7ead99ec93c73f37b950e1b446075585dff61597eb9cfb98c2f615ffca14473
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35385006
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_35385006
pascalfrancis_primary_20775203
crossref_primary_10_1016_j_carbon_2008_07_018
crossref_citationtrail_10_1016_j_carbon_2008_07_018
elsevier_sciencedirect_doi_10_1016_j_carbon_2008_07_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Carbon (New York)
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Hulicova, Yamashita, Soneda, Hatori, Kodama (bib4) 2005; 17
Raymundo-Piñero, Kierzek, Machnikowski, Béguin (bib14) 2006; 44
Xia, Gao, Song, Wu, Jiang, Hu (bib40) 2008; 33
Subramanian, Luo, Stephan, Nahm, Thomas, Wei (bib15) 2007; 111
Yang, Xia, Mokaya (bib44) 2007; 129
Liu, Wang, Teng (bib25) 2005; 43
Xing, Qiao, Ding, Li, Lu, Yan (bib30) 2006; 44
Frackowiak (bib3) 2007; 9
Ryoo, Joo, Kruk, Jaroniec (bib17) 2001; 13
Lee, Kim, Hyeon (bib18) 2006; 18
Frackowiak, Béguin (bib1) 2001; 39
Xia, Gao, Wu, Song, Ruan (bib39) 2007; 45
Qu, Shi (bib8) 1998; 74
Zhou, Zhu, Hibino, Honma (bib21) 2003; 122
Vix-Guterl, Frackowiak, Jurewicz, Friebe, Parmentier, Béguin (bib27) 2005; 43
Li, Song, Chen (bib29) 2006; 51
Chmiola, Yushin, Gogotsi, Portet, Simon, Taberna (bib33) 2006; 313
Li, Xi, Zhu, Wen, Wang (bib6) 2006; 96
Wang, Li, Xia (bib36) 2006; 18
Lee, Yoon, Oh, Shin, Hyeon (bib20) 2000; 12
Barbieri, Hahn, Herzog, Kotz (bib13) 2005; 43
Winter, Brodd (bib2) 2004; 104
Emmenegger, Mauron, Sudan, Wenger, Hermann, Gallay (bib11) 2003; 124
Fuertes, Lota, Centeno, Frackowiak (bib28) 2005; 50
Fuertes, Pico, Rojo (bib24) 2004; 133
Ryoo, Joo, Jun (bib16) 1999; 103
Jurewicz, Vix-Guterl, Frackowiak, Saadallah, Reda, Parmentier (bib23) 2004; 65
Wang, Li, Fang, Liu, Lu, Cheng (bib31) 2006; 110
Ania, Khomenko, Raymundo-Piñero, Parra, Béguin (bib37) 2007; 17
Mbileni, Prinsloo, Witcomb, Coville (bib42) 2006; 44
Kastening, Hahn, Rabanus, Heins, Felde (bib7) 1997; 42
Vix-Guterl, Saadallah, Jurewicz, Frackowiak, Reda, Parmentier (bib22) 2004; 108
Kierzek, Frackowiak, Lota, Gryglewicz, Machnikowski (bib12) 2004; 49
Sevilla, Álvarez, Centeno, Fuertes, Stoeckli (bib32) 2007; 52
Endo, Kim, Ohta, Ishii, Inoue, Hayashi (bib9) 2002; 40
Dong, Shen, Gu, Xiong, Zhu, Li (bib35) 2006; 110
Lozano-Castello, Cazorla-Amoros, Linares-Solano, Shiraishi, Kurihara, Oya (bib10) 2003; 41
Fang, Binder (bib5) 2006; 110
Jang, Han, Hyeon, Oh (bib34) 2003; 123
Wang, Li, Liu, Lu, Cheng (bib38) 2008; 47
Álvarez, Blanco-López, Miranda-Ordieres, Fuertes, Centeno (bib26) 2005; 43
Lee, Yoon, Hyeon, Oh, Kim (bib19) 1999
Zhao, Feng, Huo, Melosh, Fredrickson, Chmelka (bib41) 1998; 279
Kabbour, Baumann, Satcher, Saulnier, Ahn (bib43) 2006; 18
Barbieri (10.1016/j.carbon.2008.07.018_bib13) 2005; 43
Raymundo-Piñero (10.1016/j.carbon.2008.07.018_bib14) 2006; 44
Ania (10.1016/j.carbon.2008.07.018_bib37) 2007; 17
Jang (10.1016/j.carbon.2008.07.018_bib34) 2003; 123
Li (10.1016/j.carbon.2008.07.018_bib6) 2006; 96
Frackowiak (10.1016/j.carbon.2008.07.018_bib1) 2001; 39
Vix-Guterl (10.1016/j.carbon.2008.07.018_bib22) 2004; 108
Xia (10.1016/j.carbon.2008.07.018_bib40) 2008; 33
Lee (10.1016/j.carbon.2008.07.018_bib18) 2006; 18
Wang (10.1016/j.carbon.2008.07.018_bib38) 2008; 47
Ryoo (10.1016/j.carbon.2008.07.018_bib16) 1999; 103
Ryoo (10.1016/j.carbon.2008.07.018_bib17) 2001; 13
Sevilla (10.1016/j.carbon.2008.07.018_bib32) 2007; 52
Qu (10.1016/j.carbon.2008.07.018_bib8) 1998; 74
Endo (10.1016/j.carbon.2008.07.018_bib9) 2002; 40
Lee (10.1016/j.carbon.2008.07.018_bib19) 1999
Wang (10.1016/j.carbon.2008.07.018_bib31) 2006; 110
Yang (10.1016/j.carbon.2008.07.018_bib44) 2007; 129
Emmenegger (10.1016/j.carbon.2008.07.018_bib11) 2003; 124
Fuertes (10.1016/j.carbon.2008.07.018_bib24) 2004; 133
Xia (10.1016/j.carbon.2008.07.018_bib39) 2007; 45
Fang (10.1016/j.carbon.2008.07.018_bib5) 2006; 110
Xing (10.1016/j.carbon.2008.07.018_bib30) 2006; 44
Vix-Guterl (10.1016/j.carbon.2008.07.018_bib27) 2005; 43
Frackowiak (10.1016/j.carbon.2008.07.018_bib3) 2007; 9
Hulicova (10.1016/j.carbon.2008.07.018_bib4) 2005; 17
Li (10.1016/j.carbon.2008.07.018_bib29) 2006; 51
Kierzek (10.1016/j.carbon.2008.07.018_bib12) 2004; 49
Mbileni (10.1016/j.carbon.2008.07.018_bib42) 2006; 44
Kastening (10.1016/j.carbon.2008.07.018_bib7) 1997; 42
Fuertes (10.1016/j.carbon.2008.07.018_bib28) 2005; 50
Zhou (10.1016/j.carbon.2008.07.018_bib21) 2003; 122
Dong (10.1016/j.carbon.2008.07.018_bib35) 2006; 110
Lozano-Castello (10.1016/j.carbon.2008.07.018_bib10) 2003; 41
Winter (10.1016/j.carbon.2008.07.018_bib2) 2004; 104
Zhao (10.1016/j.carbon.2008.07.018_bib41) 1998; 279
Kabbour (10.1016/j.carbon.2008.07.018_bib43) 2006; 18
Liu (10.1016/j.carbon.2008.07.018_bib25) 2005; 43
Wang (10.1016/j.carbon.2008.07.018_bib36) 2006; 18
Subramanian (10.1016/j.carbon.2008.07.018_bib15) 2007; 111
Lee (10.1016/j.carbon.2008.07.018_bib20) 2000; 12
Álvarez (10.1016/j.carbon.2008.07.018_bib26) 2005; 43
Jurewicz (10.1016/j.carbon.2008.07.018_bib23) 2004; 65
Chmiola (10.1016/j.carbon.2008.07.018_bib33) 2006; 313
References_xml – volume: 39
  start-page: 937
  year: 2001
  end-page: 950
  ident: bib1
  article-title: Carbon materials for the electrochemical storage of energy in capacitors
  publication-title: Carbon
– volume: 17
  start-page: 1241
  year: 2005
  end-page: 1247
  ident: bib4
  article-title: Supercapacitors prepared from melamine-based carbon
  publication-title: Chem Mater
– volume: 42
  start-page: 2789
  year: 1997
  end-page: 2800
  ident: bib7
  article-title: Electronic properties and double layer of activated carbon
  publication-title: Electrochim Acta
– volume: 124
  start-page: 321
  year: 2003
  end-page: 329
  ident: bib11
  article-title: Investigation of electrochemical double-layer capacitors electrodes based on carbon nanotubes and activated carbon materials
  publication-title: J Power Sources
– volume: 45
  start-page: 1989
  year: 2007
  end-page: 1996
  ident: bib39
  article-title: Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3
  publication-title: Carbon
– volume: 18
  start-page: 2619
  year: 2006
  end-page: 2623
  ident: bib36
  article-title: Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance
  publication-title: Adv Mater
– volume: 129
  start-page: 1673
  year: 2007
  end-page: 1679
  ident: bib44
  article-title: Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials
  publication-title: J Am Chem Soc
– volume: 65
  start-page: 287
  year: 2004
  end-page: 293
  ident: bib23
  article-title: Capacitance properties of ordered porous carbon materials prepared by a templating procedure
  publication-title: J Phys Chem Solids
– volume: 44
  start-page: 216
  year: 2006
  end-page: 224
  ident: bib30
  article-title: Superior electric double layer capacitors using ordered mesoporous carbons
  publication-title: Carbon
– volume: 17
  start-page: 1828
  year: 2007
  end-page: 1836
  ident: bib37
  article-title: The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template
  publication-title: Adv Funct Mater
– volume: 18
  start-page: 6085
  year: 2006
  end-page: 6087
  ident: bib43
  article-title: Toward new candidates for hydrogen storage: high-surface-area carbon aerogels
  publication-title: Chem Mater
– volume: 41
  start-page: 1765
  year: 2003
  end-page: 1775
  ident: bib10
  article-title: Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte
  publication-title: Carbon
– volume: 110
  start-page: 7877
  year: 2006
  end-page: 7882
  ident: bib5
  article-title: A novel carbon electrode material for highly improved EDLC performance
  publication-title: J Phys Chem B
– volume: 13
  start-page: 677
  year: 2001
  end-page: 681
  ident: bib17
  article-title: Ordered mesoporous carbons
  publication-title: Adv Mater
– volume: 33
  start-page: 116
  year: 2008
  end-page: 123
  ident: bib40
  article-title: CO
  publication-title: Int J Hydrogen Energy
– volume: 43
  start-page: 1303
  year: 2005
  end-page: 1310
  ident: bib13
  article-title: Capacitance limits of high surface area activated carbons for double layer capacitors
  publication-title: Carbon
– volume: 123
  start-page: 79
  year: 2003
  end-page: 85
  ident: bib34
  article-title: Electrochimical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes
  publication-title: J Power Sources
– volume: 51
  start-page: 5715
  year: 2006
  end-page: 5720
  ident: bib29
  article-title: Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors
  publication-title: Electrochim Acta
– volume: 111
  start-page: 7527
  year: 2007
  end-page: 7531
  ident: bib15
  article-title: Supercapacitors from activated carbon derived from banana fibers
  publication-title: J Phys Chem C
– volume: 110
  start-page: 8570
  year: 2006
  end-page: 8575
  ident: bib31
  article-title: Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport
  publication-title: J Phys Chem B
– volume: 313
  start-page: 1760
  year: 2006
  end-page: 1763
  ident: bib33
  article-title: Anomalous increase in carbon capacitance at pore sizes less than 1
  publication-title: Science
– volume: 9
  start-page: 1774
  year: 2007
  end-page: 1785
  ident: bib3
  article-title: Carbon materials for supercapacitor application
  publication-title: Phys Chem Chem Phys
– volume: 43
  start-page: 866
  year: 2005
  end-page: 870
  ident: bib26
  article-title: Electrochemical capacitor performance of mesoporous carbons obtained by templating technique
  publication-title: Carbon
– volume: 50
  start-page: 2799
  year: 2005
  end-page: 2805
  ident: bib28
  article-title: Templated mesoporous carbons for supercapacitor application
  publication-title: Electrochim Acta
– start-page: 2177
  year: 1999
  end-page: 2178
  ident: bib19
  article-title: Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors
  publication-title: Chem Commun
– volume: 52
  start-page: 3207
  year: 2007
  end-page: 3215
  ident: bib32
  article-title: Performance of templated mesoporous carbons in supercapacitors
  publication-title: Electrochim Acta
– volume: 122
  start-page: 219
  year: 2003
  end-page: 223
  ident: bib21
  article-title: Electrochemical capacitance of self-ordered mesoporous carbon
  publication-title: J Power Sources
– volume: 43
  start-page: 559
  year: 2005
  end-page: 566
  ident: bib25
  article-title: A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation
  publication-title: Carbon
– volume: 110
  start-page: 6015
  year: 2006
  end-page: 6019
  ident: bib35
  article-title: MnO
  publication-title: J Phys Chem B
– volume: 96
  start-page: 357
  year: 2006
  end-page: 362
  ident: bib6
  article-title: Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon
  publication-title: Micropor Mesopor Mater
– volume: 103
  start-page: 7743
  year: 1999
  end-page: 7746
  ident: bib16
  article-title: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation
  publication-title: J Phys Chem B
– volume: 40
  start-page: 2613
  year: 2002
  end-page: 2626
  ident: bib9
  article-title: Morphology and organic EDLC applications of chemically activated AR-resin-based carbons
  publication-title: Carbon
– volume: 44
  start-page: 2498
  year: 2006
  end-page: 2507
  ident: bib14
  article-title: Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes
  publication-title: Carbon
– volume: 49
  start-page: 515
  year: 2004
  end-page: 523
  ident: bib12
  article-title: Electrochemical capacitors based on highly porous carbons prepared by KOH activation
  publication-title: Electrochim Acta
– volume: 108
  start-page: 148
  year: 2004
  end-page: 155
  ident: bib22
  article-title: Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure
  publication-title: Mater Sci Eng B
– volume: 47
  start-page: 373
  year: 2008
  end-page: 376
  ident: bib38
  article-title: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage
  publication-title: Angew Chem Int Ed
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4269
  ident: bib2
  article-title: What are batteries, fuel cells, and supercapacitors?
  publication-title: Chem Rev
– volume: 133
  start-page: 329
  year: 2004
  end-page: 336
  ident: bib24
  article-title: Influence of pore structure on electric double-layer capacitance of template mesoporous carbons
  publication-title: J Power Sources
– volume: 279
  start-page: 548
  year: 1998
  end-page: 552
  ident: bib41
  article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores
  publication-title: Science
– volume: 43
  start-page: 1293
  year: 2005
  end-page: 1302
  ident: bib27
  article-title: Electrochemical energy storage in ordered porous carbon materials
  publication-title: Carbon
– volume: 74
  start-page: 99
  year: 1998
  end-page: 107
  ident: bib8
  article-title: Studies of activated carbons used in double-layer capacitors
  publication-title: J Power Sources
– volume: 12
  start-page: 359
  year: 2000
  end-page: 362
  ident: bib20
  article-title: Development of a new mesoporous carbon using an HMS aluminosilicate template
  publication-title: Adv Mater
– volume: 44
  start-page: 1476
  year: 2006
  end-page: 1483
  ident: bib42
  article-title: Synthesis of mesoporous carbon supports via liquid impregnation of polystyrene onto a MCM-48 silica template
  publication-title: Carbon
– volume: 18
  start-page: 2073
  year: 2006
  end-page: 2094
  ident: bib18
  article-title: Recent progress in the synthesis of porous carbon materials
  publication-title: Adv Mater
– volume: 133
  start-page: 329
  year: 2004
  ident: 10.1016/j.carbon.2008.07.018_bib24
  article-title: Influence of pore structure on electric double-layer capacitance of template mesoporous carbons
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.013
– volume: 51
  start-page: 5715
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib29
  article-title: Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2006.03.005
– volume: 45
  start-page: 1989
  year: 2007
  ident: 10.1016/j.carbon.2008.07.018_bib39
  article-title: Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.06.002
– volume: 313
  start-page: 1760
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib33
  article-title: Anomalous increase in carbon capacitance at pore sizes less than 1nm
  publication-title: Science
  doi: 10.1126/science.1132195
– volume: 18
  start-page: 2073
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib18
  article-title: Recent progress in the synthesis of porous carbon materials
  publication-title: Adv Mater
  doi: 10.1002/adma.200501576
– volume: 12
  start-page: 359
  year: 2000
  ident: 10.1016/j.carbon.2008.07.018_bib20
  article-title: Development of a new mesoporous carbon using an HMS aluminosilicate template
  publication-title: Adv Mater
  doi: 10.1002/(SICI)1521-4095(200003)12:5<359::AID-ADMA359>3.0.CO;2-1
– volume: 17
  start-page: 1828
  year: 2007
  ident: 10.1016/j.carbon.2008.07.018_bib37
  article-title: The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200600961
– start-page: 2177
  year: 1999
  ident: 10.1016/j.carbon.2008.07.018_bib19
  article-title: Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors
  publication-title: Chem Commun
  doi: 10.1039/a906872d
– volume: 43
  start-page: 1293
  year: 2005
  ident: 10.1016/j.carbon.2008.07.018_bib27
  article-title: Electrochemical energy storage in ordered porous carbon materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.12.028
– volume: 108
  start-page: 148
  year: 2004
  ident: 10.1016/j.carbon.2008.07.018_bib22
  article-title: Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2003.10.096
– volume: 129
  start-page: 1673
  year: 2007
  ident: 10.1016/j.carbon.2008.07.018_bib44
  article-title: Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials
  publication-title: J Am Chem Soc
  doi: 10.1021/ja067149g
– volume: 41
  start-page: 1765
  year: 2003
  ident: 10.1016/j.carbon.2008.07.018_bib10
  article-title: Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00141-6
– volume: 49
  start-page: 515
  year: 2004
  ident: 10.1016/j.carbon.2008.07.018_bib12
  article-title: Electrochemical capacitors based on highly porous carbons prepared by KOH activation
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2003.08.026
– volume: 18
  start-page: 2619
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib36
  article-title: Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance
  publication-title: Adv Mater
  doi: 10.1002/adma.200600445
– volume: 74
  start-page: 99
  year: 1998
  ident: 10.1016/j.carbon.2008.07.018_bib8
  article-title: Studies of activated carbons used in double-layer capacitors
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(98)00038-X
– volume: 65
  start-page: 287
  year: 2004
  ident: 10.1016/j.carbon.2008.07.018_bib23
  article-title: Capacitance properties of ordered porous carbon materials prepared by a templating procedure
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2003.10.024
– volume: 104
  start-page: 4245
  year: 2004
  ident: 10.1016/j.carbon.2008.07.018_bib2
  article-title: What are batteries, fuel cells, and supercapacitors?
  publication-title: Chem Rev
  doi: 10.1021/cr020730k
– volume: 44
  start-page: 216
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib30
  article-title: Superior electric double layer capacitors using ordered mesoporous carbons
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.07.029
– volume: 17
  start-page: 1241
  year: 2005
  ident: 10.1016/j.carbon.2008.07.018_bib4
  article-title: Supercapacitors prepared from melamine-based carbon
  publication-title: Chem Mater
  doi: 10.1021/cm049337g
– volume: 43
  start-page: 559
  year: 2005
  ident: 10.1016/j.carbon.2008.07.018_bib25
  article-title: A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.10.020
– volume: 44
  start-page: 2498
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib14
  article-title: Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.05.022
– volume: 47
  start-page: 373
  year: 2008
  ident: 10.1016/j.carbon.2008.07.018_bib38
  article-title: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200702721
– volume: 96
  start-page: 357
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib6
  article-title: Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon
  publication-title: Micropor Mesopor Mater
  doi: 10.1016/j.micromeso.2006.07.021
– volume: 123
  start-page: 79
  year: 2003
  ident: 10.1016/j.carbon.2008.07.018_bib34
  article-title: Electrochimical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00459-2
– volume: 110
  start-page: 7877
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib5
  article-title: A novel carbon electrode material for highly improved EDLC performance
  publication-title: J Phys Chem B
  doi: 10.1021/jp060110d
– volume: 124
  start-page: 321
  year: 2003
  ident: 10.1016/j.carbon.2008.07.018_bib11
  article-title: Investigation of electrochemical double-layer capacitors electrodes based on carbon nanotubes and activated carbon materials
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00590-1
– volume: 52
  start-page: 3207
  year: 2007
  ident: 10.1016/j.carbon.2008.07.018_bib32
  article-title: Performance of templated mesoporous carbons in supercapacitors
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2006.09.063
– volume: 43
  start-page: 1303
  year: 2005
  ident: 10.1016/j.carbon.2008.07.018_bib13
  article-title: Capacitance limits of high surface area activated carbons for double layer capacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.01.001
– volume: 110
  start-page: 6015
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib35
  article-title: MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors
  publication-title: J Phys Chem B
  doi: 10.1021/jp056754n
– volume: 122
  start-page: 219
  year: 2003
  ident: 10.1016/j.carbon.2008.07.018_bib21
  article-title: Electrochemical capacitance of self-ordered mesoporous carbon
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(03)00439-7
– volume: 39
  start-page: 937
  year: 2001
  ident: 10.1016/j.carbon.2008.07.018_bib1
  article-title: Carbon materials for the electrochemical storage of energy in capacitors
  publication-title: Carbon
  doi: 10.1016/S0008-6223(00)00183-4
– volume: 43
  start-page: 866
  year: 2005
  ident: 10.1016/j.carbon.2008.07.018_bib26
  article-title: Electrochemical capacitor performance of mesoporous carbons obtained by templating technique
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.10.044
– volume: 279
  start-page: 548
  year: 1998
  ident: 10.1016/j.carbon.2008.07.018_bib41
  article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores
  publication-title: Science
  doi: 10.1126/science.279.5350.548
– volume: 40
  start-page: 2613
  year: 2002
  ident: 10.1016/j.carbon.2008.07.018_bib9
  article-title: Morphology and organic EDLC applications of chemically activated AR-resin-based carbons
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00191-4
– volume: 44
  start-page: 1476
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib42
  article-title: Synthesis of mesoporous carbon supports via liquid impregnation of polystyrene onto a MCM-48 silica template
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.12.012
– volume: 50
  start-page: 2799
  year: 2005
  ident: 10.1016/j.carbon.2008.07.018_bib28
  article-title: Templated mesoporous carbons for supercapacitor application
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2004.11.027
– volume: 110
  start-page: 8570
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib31
  article-title: Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport
  publication-title: J Phys Chem B
  doi: 10.1021/jp0572683
– volume: 42
  start-page: 2789
  year: 1997
  ident: 10.1016/j.carbon.2008.07.018_bib7
  article-title: Electronic properties and double layer of activated carbon
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(97)00082-0
– volume: 33
  start-page: 116
  year: 2008
  ident: 10.1016/j.carbon.2008.07.018_bib40
  article-title: CO2 activation of ordered porous carbon CMK-1 for hydrogen storage
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.08.019
– volume: 9
  start-page: 1774
  year: 2007
  ident: 10.1016/j.carbon.2008.07.018_bib3
  article-title: Carbon materials for supercapacitor application
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b618139m
– volume: 18
  start-page: 6085
  year: 2006
  ident: 10.1016/j.carbon.2008.07.018_bib43
  article-title: Toward new candidates for hydrogen storage: high-surface-area carbon aerogels
  publication-title: Chem Mater
  doi: 10.1021/cm062329a
– volume: 111
  start-page: 7527
  year: 2007
  ident: 10.1016/j.carbon.2008.07.018_bib15
  article-title: Supercapacitors from activated carbon derived from banana fibers
  publication-title: J Phys Chem C
  doi: 10.1021/jp067009t
– volume: 103
  start-page: 7743
  year: 1999
  ident: 10.1016/j.carbon.2008.07.018_bib16
  article-title: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation
  publication-title: J Phys Chem B
  doi: 10.1021/jp991673a
– volume: 13
  start-page: 677
  year: 2001
  ident: 10.1016/j.carbon.2008.07.018_bib17
  article-title: Ordered mesoporous carbons
  publication-title: Adv Mater
  doi: 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
SSID ssj0004814
Score 2.4981914
Snippet Various porous carbons were prepared by CO 2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were...
Various porous carbons were prepared by CO2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1718
SubjectTerms Chemistry
Colloidal state and disperse state
Cross-disciplinary physics: materials science; rheology
Electrochemistry
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
General and physical chemistry
Materials science
Physics
Porous materials
Specific materials
Surface physical chemistry
Title Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials
URI https://dx.doi.org/10.1016/j.carbon.2008.07.018
https://www.proquest.com/docview/35385006
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DHxRE_MT5MfPga7euaZfmcQzHVNzThL2V5JrAdHaj3V7927206WQoDHxMuZA2d737XXIfhDxEkpuuAuYxEIGH-F97yhfgmW5PxXEIEUvtOeTruDd6C5-n0bRBBnUujA2rdLq_0umltnZPOm43O8vZzOb4WjiOEDou685Zvz0MuZXy9tdPmEcYV_W97TW_pa7T58oYL5C5WmQuopK3fdv642_zdLSUBW6aqbpd_FLcpTUanpBjByNpv3rTU9LQ2Rk5GNTd287Jx2hmU4vLTidziiAbPXxavUhB7eErdUHqc53STxuVhzS6oDLDoS7cCBEtLdZLnQPaVMCfP6eub06qKWLdSnwvyGT4OBmMPNdYwQPW4ytPcpQfITQIBpwZxpWIfN1V6BoigkAHIjUGkY7gWgkwSsQQ2LExINH_4uyS7GWLTF8RKrkPaRz3VDf2kdEB0kYaEEcJEwoJpklYvZ0JuKLjtvfFPKmjy96T6ttdP0yeIBOaxNvMWlZFN3bQ85pTyZbwJGgXdsxsbTF2s1xgSwMGPmuS-5rTCXLQ3qbITCPLEoamIkKddf3vxW_IYRl9UmY23pK9Vb7WdwhxVqpVynCL7PefXkbjb_pz_tE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R7YFKFaIUxFIePpRjIBsn6_jAAfHQUh6nrcTNsie2tLBkV5tdVVz4UfzCjhOHCrUSUiWOjpzHzjgzn7PfzAfwPdPC9QzyiKNMIsL_NjKxxMj1-ibPU8x44b9DXt_0Bz_TH7fZ7RI8t7UwnlYZYn8T0-toHY4cBmseTkcjX-Pr4ThB6LzuOxcHZuWlffxF-7bq6OKUnLyfJOdnw5NBFKQFIuR9MY-0IAtKaVFyFNxxYWQW256hzRHlUILQhXOU66WwRqIzMsfEj51DTTsQwemyH-BjStHCqyYcPP2hlaR500_c0wr807XlejWnDPXMTMrA4BQHsZca-Xc6_DzVFTnJNeoafyWKOvudr8JKgK3suLHMF1iy5Rosn7RqcV_hfjDypcy1ssqYEaifLCrWPEjF_MdeFkjxY1uwB88CpDm2Yrqkoa3CiBA0qxZTO0PK4UjBZsaCTk9hGWHr5nVZh-F7WHsDOuWktJvAtIixyPO-6eUxLayE5mYWCbdJl0qNrgu8NafC0OTca22MVctmu1PNbw_6m0KRE7oQvZw1bZp8vDFftJ5Srxarojz0xpm7rxz7crvEtyJMYt6FvdbTijzo_73RpSWXKU6LLaMYufXfN9-D5cHw-kpdXdxcfoNPNfOlrqrchs58trA7BK_mZrdezwzUO78_vwFC0TqS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+porous+carbons+with+controlled+micropores+and+mesopores+for+supercapacitor+electrode+materials&rft.jtitle=Carbon+%28New+York%29&rft.au=Xia%2C+Kaisheng&rft.au=Gao%2C+Qiuming&rft.au=Jiang%2C+Jinhua&rft.au=Hu%2C+Juan&rft.date=2008-11-01&rft.issn=0008-6223&rft.volume=46&rft.issue=13&rft.spage=1718&rft.epage=1726&rft_id=info:doi/10.1016%2Fj.carbon.2008.07.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbon_2008_07_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon