Experimental evidence for diffusion creep in the superplastic 3 mol% yttria-stabilized tetragonal zirconia

Although there have been numerous studies on the high temperature deformation characteristics of the superplastic 3 mol% yttria stabilized tetragonal zirconia (3YTZ), the rate controlling deformation mechanism has not been identified unambiguously. In the present study, experiments were conducted on...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 49; no. 12; pp. 2239 - 2249
Main Authors Charit, I, Chokshi, A.H
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 17.07.2001
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although there have been numerous studies on the high temperature deformation characteristics of the superplastic 3 mol% yttria stabilized tetragonal zirconia (3YTZ), the rate controlling deformation mechanism has not been identified unambiguously. In the present study, experiments were conducted on 3YTZ at high stresses and at coarser grain sizes than used conventionally for superplasticity. The experimental results reveal, for the first time, an intragranular dislocation motion controlled high stress regime that is independent of the grain size. With a decrease in stress, there is a transition to a Newtonian viscous deformation regime consistent with Coble grain boundary diffusion creep. At sufficiently low stresses, or in materials with finer grain sizes, there is a further transition to a grain size dependent interface controlled deformation regime. Analysis of the experimental data suggests strongly that superplastic flow in 3YTZ occurs by an interface controlled deformation mechanism.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1359-6454
1873-2453
DOI:10.1016/S1359-6454(01)00131-8