Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide
Ru doped anatase supported on silica was prepared by solid-state dispersion method and examined for the photocatalytic reduction of carbon dioxide in aqueous medium at ambient conditions. To assist in interpreting the photocatalytic behaviour of Ru-TiO2/SiO2, reference systems consisting of Ru doped...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 62; no. 1-2; pp. 169 - 180 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
10.01.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ru doped anatase supported on silica was prepared by solid-state dispersion method and examined for the photocatalytic reduction of carbon dioxide in aqueous medium at ambient conditions. To assist in interpreting the photocatalytic behaviour of Ru-TiO2/SiO2, reference systems consisting of Ru doped TiO2 and TiO2 supported on SiO2 were also analyzed and the conditions were optimized. Ru/TiO2 photocatalysts with metal loadings of 0.1, 0.3, 0.5 and 1.0wt% were prepared by impregnation method and a series of TiO2/SiO2 catalysts with low TiO2 (1, 3, 5 and 10wt%) contents were prepared by solid-state dispersion method. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis DRS, FT-IR and Raman spectroscopy. The results showed that TiO2 particles with Ru ions have higher photocatalytic activity than undoped TiO2 and the optimum Ru loading was found to be 0.5wt%. Nevertheless, the yield increased notably when TiO2 was supported on SiO2. This strong enhancement suggests that in 10wt% TiO2/SiO2 the efficiency of charge separation is strongly influenced through the presence of TiOSi bridging bonds. On the contrary, Ru-TiO2/SiO2 has no significant improvement in activity over TiO2/SiO2 except that it shows nearly quadruple times higher activity for the formation of methanol than Ru/TiO2. The difference in the photocatalytic activity is related to its physico-chemical properties. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0926-3373 1873-3883 |
DOI: | 10.1016/j.apcatb.2005.07.009 |