Thermal annealing of nuclear graphite during in-situ electron irradiation
We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and 473 K. For each temperature, nuclear grade Pile Grade A graphite specimens were subject to a fluence of ca. 1022 electrons cm−2, and transmissio...
Saved in:
Published in | Carbon (New York) Vol. 115; pp. 659 - 664 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.05.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0008-6223 1873-3891 |
DOI | 10.1016/j.carbon.2017.01.057 |
Cover
Loading…
Abstract | We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and 473 K. For each temperature, nuclear grade Pile Grade A graphite specimens were subject to a fluence of ca. 1022 electrons cm−2, and transmission electron micrographs and selected area diffraction patterns were collected during electron beam exposure. By considering a critical fluence, at which the graphite (002) d-spacing increased by 10%, a temperature threshold for damage has been determined. Below ca. 420 K, electron irradiation caused significant net structural damage: fragmenting basal planes and producing a tortuous nanotexture. Above this temperature the effects of thermal annealing became more prevalent, maintaining the structure even at much higher fluences. We have derived activation energies for the annealing processes operative in these two temperature regimes and, via a comparison with theoretical predictions have, for the first time, associated these with specific recovery processes.
[Display omitted] |
---|---|
AbstractList | We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and 473 K. For each temperature, nuclear grade Pile Grade A graphite specimens were subject to a fluence of ca. 1022 electrons cm−2, and transmission electron micrographs and selected area diffraction patterns were collected during electron beam exposure. By considering a critical fluence, at which the graphite (002) d-spacing increased by 10%, a temperature threshold for damage has been determined. Below ca. 420 K, electron irradiation caused significant net structural damage: fragmenting basal planes and producing a tortuous nanotexture. Above this temperature the effects of thermal annealing became more prevalent, maintaining the structure even at much higher fluences. We have derived activation energies for the annealing processes operative in these two temperature regimes and, via a comparison with theoretical predictions have, for the first time, associated these with specific recovery processes.
[Display omitted] We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and 473 K. For each temperature, nuclear grade Pile Grade A graphite specimens were subject to a fluence of ca. 1022 electrons cm−2, and transmission electron micrographs and selected area diffraction patterns were collected during electron beam exposure. By considering a critical fluence, at which the graphite (002) d-spacing increased by 10%, a temperature threshold for damage has been determined. Below ca. 420 K, electron irradiation caused significant net structural damage: fragmenting basal planes and producing a tortuous nanotexture. Above this temperature the effects of thermal annealing became more prevalent, maintaining the structure even at much higher fluences. We have derived activation energies for the annealing processes operative in these two temperature regimes and, via a comparison with theoretical predictions have, for the first time, associated these with specific recovery processes. |
Author | Freeman, H.M. Brydson, R.M.D. Scott, A.J. |
Author_xml | – sequence: 1 givenname: H.M. surname: Freeman fullname: Freeman, H.M. email: freeman@gfz-potsdam.de organization: Institute for Materials Research, School of Chemical and Process Engineering, Univ. Leeds, Leeds, LS2 9JT, UK – sequence: 2 givenname: A.J. surname: Scott fullname: Scott, A.J. organization: Institute for Materials Research, School of Chemical and Process Engineering, Univ. Leeds, Leeds, LS2 9JT, UK – sequence: 3 givenname: R.M.D. surname: Brydson fullname: Brydson, R.M.D. organization: Institute for Materials Research, School of Chemical and Process Engineering, Univ. Leeds, Leeds, LS2 9JT, UK |
BookMark | eNqFkEFP3DAQhS1EpS6Uf9BDJC5cEmZiJ056qIRQW5CQuMDZ8joT8Cprb8cJEv8eb7cnDnAaPc17o3nfiTgOMZAQ3xEqBGwvN5WzvI6hqgF1BVhBo4_ECjstS9n1eCxWANCVbV3Lr-IkpU2WqkO1ErcPz8RbOxU2BLKTD09FHIuwuIksF09sd89-pmJYeL_yoUx-XgqayM0cQ-GZ7eDt7GP4Jr6Mdkp09n-eisffvx6ub8q7-z-311d3pZOtnssOWlDrDrSF2kEz2LHXg-76XiPVUvey7hs1uBG60RECNK3KWrWA2Ci7BnkqLg53dxz_LpRms_XJ0TTZQHFJps7dZCuV1tl6_s66iQuH_J3BHnXb1Aowu34cXI5jSkyjcX7-V2lm6yeDYPaUzcYcKJs9ZQNoMuUcVu_CO_Zby6-fxX4eYpRJvXhik5yn4GjwnNGaIfqPD7wBGnqZJw |
CitedBy_id | crossref_primary_10_1016_j_radphyschem_2022_110401 crossref_primary_10_1016_j_carbon_2018_11_077 crossref_primary_10_2139_ssrn_4093638 crossref_primary_10_1016_j_apmt_2022_101594 crossref_primary_10_1016_j_carbon_2018_03_024 crossref_primary_10_1016_j_cartre_2021_100124 crossref_primary_10_2139_ssrn_4062831 crossref_primary_10_1016_j_jnucmat_2023_154377 crossref_primary_10_1016_j_apsusc_2020_147408 crossref_primary_10_1016_j_jnucmat_2024_155545 crossref_primary_10_1016_j_apsusc_2020_146022 crossref_primary_10_1016_S1872_5805_23_60708_5 crossref_primary_10_1016_j_carbon_2020_05_028 crossref_primary_10_1016_j_radphyschem_2024_112137 crossref_primary_10_1016_j_jnucmat_2018_01_058 crossref_primary_10_1016_j_matchar_2022_112047 crossref_primary_10_1016_j_nimb_2019_12_022 crossref_primary_10_3390_ma17040895 |
Cites_doi | 10.1016/0022-0248(95)00547-1 10.1088/0953-8984/25/13/135403 10.1016/j.carbon.2014.11.019 10.1103/PhysRevB.84.024114 10.1016/0304-3991(91)90216-S 10.1103/PhysRevB.68.144107 10.1098/rsta.1966.0028 10.1093/oxfordjournals.jmicro.a023747 10.1038/208638a0 10.1103/PhysRevLett.111.095501 10.1002/pssa.2210470102 10.1103/PhysRevB.76.075419 10.1038/nmat876 10.1016/j.jnucmat.2011.03.024 10.1080/14786436708229268 10.1016/j.carbon.2014.11.048 10.1093/oxfordjournals.jmicro.a023710 10.1016/j.diamond.2010.06.010 10.1080/01418619708214030 10.1080/14786430701210023 10.1088/0953-8984/20/39/395220 10.1080/09500830210137416 10.1016/j.jnucmat.2011.04.015 10.1103/PhysRevB.72.184109 10.1088/0034-4885/62/8/201 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV May 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV May 2017 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2017.01.057 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 664 |
ExternalDocumentID | 10_1016_j_carbon_2017_01_057 S0008622317300672 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-80604b807a02c05daf97d789971e237932954dcf08fce10056454d4601154ab03 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 06:23:27 EDT 2025 Fri Jul 25 05:04:02 EDT 2025 Tue Aug 05 03:08:15 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Fri Feb 23 02:25:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-80604b807a02c05daf97d789971e237932954dcf08fce10056454d4601154ab03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1917652401 |
PQPubID | 2045273 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000363477 proquest_journals_1917652401 crossref_citationtrail_10_1016_j_carbon_2017_01_057 crossref_primary_10_1016_j_carbon_2017_01_057 elsevier_sciencedirect_doi_10_1016_j_carbon_2017_01_057 |
PublicationCentury | 2000 |
PublicationDate | May 2017 2017-05-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Latham, Heggie, Alatalo, Oberg, Briddon (bib12) 2013; 25 Gulans, Krasheninnikov, Puska, Nieminen (bib18) 2011; 84 Gallego, Meisner, Burchell (bib32) 2013 Li, Reich, Robertson (bib9) 2005; 72 Telling, Heggie (bib13) 2007; 87 Karthik, Kane, Butt, Windes, Ubic (bib4) 2011; 412 Trevethan, Dyulgerova, Latham, Heggie, Seabourne, Scott, Briddon, Rayson (bib8) 2013; 111 Heggie, Suarez-martinez, Davidson, Haffenden (bib29) 2011; 413 Nightingale (bib1) 1962 Burden, Hutchison (bib6) 1996; 158 Mitchell, Taylor (bib20) 1965; 208 Williams, Carter (bib23) 2009 Muto, Tanabe (bib7) 1999; 48 DaCosta, Germain, Baylou (bib25) 2000 Banhart (bib31) 1999; 62 Nakai, Kinoshita, Matsunaga (bib5) 1991; 39 Zhang, Zhao, Yang, Xia, Liu, Xia (bib10) 2010; 19 Mironov, Freeman, Brown, Hage, Scott, Westwood, Da Costa, Weisbecker, Brydson (bib3) 2015; 83 Latham, Heggie, Gámez, Suárez-Martínez, Ewels, Briddon (bib11) 2008; 20 Takeuchi, Muto, Tanabe, Arai, Kuroyanagi (bib27) 1997; 76 DaCosta, Weisbecker, Farbos, Leyssale, Vignoles, Germain (bib24) 2015; 84 Kelly, Martin, Nettley (bib26) 1966; 260 Muto, Horiuchi, Tanabe (bib2) 1999; 48 Reynolds (bib15) 1968 Thrower, Mayer (bib16) 1978; 47 El-Barbary, Telling, Ewels, Heggie, Briddon (bib17) 2003; 68 Thrower (bib14) 1967; 16 (bib22) 2015 Niwase (bib30) 2002; 82 Telling, Ewels, El-Barbary, Heggie (bib21) 2003; 2 Oen (bib28) 1965 Ma (bib19) 2007; 76 Reynolds (10.1016/j.carbon.2017.01.057_bib15) 1968 El-Barbary (10.1016/j.carbon.2017.01.057_bib17) 2003; 68 Thrower (10.1016/j.carbon.2017.01.057_bib14) 1967; 16 Nightingale (10.1016/j.carbon.2017.01.057_bib1) 1962 DaCosta (10.1016/j.carbon.2017.01.057_bib24) 2015; 84 Latham (10.1016/j.carbon.2017.01.057_bib11) 2008; 20 Gallego (10.1016/j.carbon.2017.01.057_bib32) 2013 Telling (10.1016/j.carbon.2017.01.057_bib13) 2007; 87 Oen (10.1016/j.carbon.2017.01.057_bib28) 1965 Williams (10.1016/j.carbon.2017.01.057_bib23) 2009 Muto (10.1016/j.carbon.2017.01.057_bib7) 1999; 48 Niwase (10.1016/j.carbon.2017.01.057_bib30) 2002; 82 Trevethan (10.1016/j.carbon.2017.01.057_bib8) 2013; 111 Telling (10.1016/j.carbon.2017.01.057_bib21) 2003; 2 Zhang (10.1016/j.carbon.2017.01.057_bib10) 2010; 19 Muto (10.1016/j.carbon.2017.01.057_bib2) 1999; 48 Heggie (10.1016/j.carbon.2017.01.057_bib29) 2011; 413 Gulans (10.1016/j.carbon.2017.01.057_bib18) 2011; 84 Banhart (10.1016/j.carbon.2017.01.057_bib31) 1999; 62 Nakai (10.1016/j.carbon.2017.01.057_bib5) 1991; 39 (10.1016/j.carbon.2017.01.057_bib22) 2015 Ma (10.1016/j.carbon.2017.01.057_bib19) 2007; 76 Li (10.1016/j.carbon.2017.01.057_bib9) 2005; 72 DaCosta (10.1016/j.carbon.2017.01.057_bib25) 2000 Takeuchi (10.1016/j.carbon.2017.01.057_bib27) 1997; 76 Mitchell (10.1016/j.carbon.2017.01.057_bib20) 1965; 208 Thrower (10.1016/j.carbon.2017.01.057_bib16) 1978; 47 Karthik (10.1016/j.carbon.2017.01.057_bib4) 2011; 412 Mironov (10.1016/j.carbon.2017.01.057_bib3) 2015; 83 Latham (10.1016/j.carbon.2017.01.057_bib12) 2013; 25 Burden (10.1016/j.carbon.2017.01.057_bib6) 1996; 158 Kelly (10.1016/j.carbon.2017.01.057_bib26) 1966; 260 |
References_xml | – year: 1968 ident: bib15 article-title: Physical Properties of Graphite – volume: 84 start-page: 1 year: 2011 end-page: 6 ident: bib18 article-title: Bound and free self-interstitial defects in graphite and bilayer graphene: a computational study publication-title: Phys. Rev. B – volume: 413 start-page: 150 year: 2011 end-page: 155 ident: bib29 article-title: Buckle, ruck and tuck: a proposed new model for the response of graphite to neutron irradiation publication-title: J. Nucl. Mater – volume: 48 start-page: 519 year: 1999 end-page: 523 ident: bib7 article-title: Fragmentation of graphite crystals by electron irradiation at elevated temperatures publication-title: J. Electron Microsc. (Tokyo) – volume: 111 start-page: 95501 year: 2013 ident: bib8 article-title: Extended interplanar linking in graphite formed from vacancy aggregates publication-title: Phys. Rev. Lett. – volume: 208 start-page: 638 year: 1965 end-page: 641 ident: bib20 article-title: Mechanism of stored-energy release at 200° C in electron-irradiated graphite publication-title: Nature – volume: 72 start-page: 1 year: 2005 end-page: 10 ident: bib9 article-title: Defect energies of graphite: density-functional calculations publication-title: Phys. Rev. B – year: 2013 ident: bib32 article-title: Annealing studies of irradiated HOPG using X-ray measurements publication-title: Int. Nucl. Graph. Spec. Meet., IAEA Knowledge Base on Nuclear Graphite, Seattle – volume: 39 start-page: 361 year: 1991 end-page: 368 ident: bib5 article-title: A study of amorphization and microstructural evolution of graphite under electron or ion irradiation publication-title: Ultramicroscopy – volume: 16 start-page: 189 year: 1967 end-page: 209 ident: bib14 article-title: Interstitial loops in graphite, their motion and their effect on elastic modulus publication-title: Philos. Mag. – volume: 19 start-page: 1240 year: 2010 end-page: 1244 ident: bib10 article-title: Diffusion and coalescence of vacancies and interstitials in graphite: a first-principles study publication-title: Diam. Relat. Mater – volume: 2 start-page: 333 year: 2003 end-page: 337 ident: bib21 article-title: Wigner defects bridge the graphite gap publication-title: Nat. Mater – volume: 158 start-page: 185 year: 1996 end-page: 188 ident: bib6 article-title: Real-time observation of fullerene generation in a modified electron microscope publication-title: J. Cryst. Growth – volume: 68 start-page: 1 year: 2003 end-page: 7 ident: bib17 article-title: Structure and energetics of the vacancy in graphite publication-title: Phys. Rev. B – volume: 48 start-page: 767 year: 1999 end-page: 776 ident: bib2 article-title: Local structural order in electron-irradiated graphite studied by high-resolution high-voltage electron microscopy publication-title: J. Electron Microsc. (Tokyo) – volume: 25 start-page: 135403 year: 2013 ident: bib12 article-title: The contribution made by lattice vacancies to the Wigner effect in radiation-damaged graphite publication-title: J. Phys. Condens. Matter – start-page: 909 year: 2000 end-page: 912 ident: bib25 article-title: Level curve tracking algorithm for textural feature extraction publication-title: 15th Intl. Conf. Pattern Recognit., Los Alamitos, CA: IEEE, Barcelona – year: 1965 ident: bib28 article-title: Cross Sections for Atomic Displacements in Solids by Fast Electrons – volume: 76 start-page: 691 year: 1997 end-page: 700 ident: bib27 article-title: Damage process in electron-irradiated graphite studied by transmission electron microscopy. II. Analysis of extended energy-loss fine structure of highly oriented pyrolytic graphite publication-title: Philos. Mag. A – volume: 412 start-page: 321 year: 2011 end-page: 326 ident: bib4 article-title: In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite publication-title: J. Nucl. Mater – volume: 62 start-page: 1181 year: 1999 end-page: 1221 ident: bib31 article-title: Irradiation effects in carbon nanostructures publication-title: Rep. Prog. Phys. – volume: 47 start-page: 11 year: 1978 end-page: 37 ident: bib16 article-title: Point defects and self-diffusion in graphite publication-title: Phys. Status Solidi – volume: 20 start-page: 395220 year: 2008 ident: bib11 article-title: The di-interstitial in graphite publication-title: J. Phys. Condens. Matter – year: 2015 ident: bib22 publication-title: DENS Solutions, Nano-chip Technology – volume: 260 start-page: 37 year: 1966 ident: bib26 article-title: Dimensional changes in pyrolytic graphite under fast-neutron irradiation publication-title: Philos. Trans. R. Soc. Lond. A – volume: 76 start-page: 75419 year: 2007 ident: bib19 article-title: Simulation of interstitial diffusion in graphite publication-title: Phys. Rev. B – year: 1962 ident: bib1 article-title: Nuclear Graphite – year: 2009 ident: bib23 article-title: Transmission Electron Microscopy: a Textbook for Materials Science – volume: 87 start-page: 4797 year: 2007 end-page: 4846 ident: bib13 article-title: Radiation defects in graphite publication-title: Philos. Mag. – volume: 82 start-page: 401 year: 2002 end-page: 408 ident: bib30 article-title: Irradiation-induced amorphization of graphite: a dislocation accumulation model publication-title: Philos. Mag. Lett. – volume: 83 start-page: 106 year: 2015 end-page: 117 ident: bib3 article-title: Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy publication-title: Carbon N. Y. – volume: 84 start-page: 160 year: 2015 end-page: 173 ident: bib24 article-title: Investigating carbon materials nanostructure using image orientation statistics publication-title: Carbon N. Y. – volume: 158 start-page: 185 year: 1996 ident: 10.1016/j.carbon.2017.01.057_bib6 article-title: Real-time observation of fullerene generation in a modified electron microscope publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(95)00547-1 – year: 1968 ident: 10.1016/j.carbon.2017.01.057_bib15 – volume: 25 start-page: 135403 year: 2013 ident: 10.1016/j.carbon.2017.01.057_bib12 article-title: The contribution made by lattice vacancies to the Wigner effect in radiation-damaged graphite publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/25/13/135403 – year: 1965 ident: 10.1016/j.carbon.2017.01.057_bib28 – volume: 83 start-page: 106 year: 2015 ident: 10.1016/j.carbon.2017.01.057_bib3 article-title: Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2014.11.019 – volume: 84 start-page: 1 year: 2011 ident: 10.1016/j.carbon.2017.01.057_bib18 article-title: Bound and free self-interstitial defects in graphite and bilayer graphene: a computational study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.024114 – volume: 39 start-page: 361 year: 1991 ident: 10.1016/j.carbon.2017.01.057_bib5 article-title: A study of amorphization and microstructural evolution of graphite under electron or ion irradiation publication-title: Ultramicroscopy doi: 10.1016/0304-3991(91)90216-S – volume: 68 start-page: 1 year: 2003 ident: 10.1016/j.carbon.2017.01.057_bib17 article-title: Structure and energetics of the vacancy in graphite publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.144107 – volume: 260 start-page: 37 year: 1966 ident: 10.1016/j.carbon.2017.01.057_bib26 article-title: Dimensional changes in pyrolytic graphite under fast-neutron irradiation publication-title: Philos. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1966.0028 – volume: 48 start-page: 767 year: 1999 ident: 10.1016/j.carbon.2017.01.057_bib2 article-title: Local structural order in electron-irradiated graphite studied by high-resolution high-voltage electron microscopy publication-title: J. Electron Microsc. (Tokyo) doi: 10.1093/oxfordjournals.jmicro.a023747 – volume: 208 start-page: 638 year: 1965 ident: 10.1016/j.carbon.2017.01.057_bib20 article-title: Mechanism of stored-energy release at 200° C in electron-irradiated graphite publication-title: Nature doi: 10.1038/208638a0 – volume: 111 start-page: 95501 year: 2013 ident: 10.1016/j.carbon.2017.01.057_bib8 article-title: Extended interplanar linking in graphite formed from vacancy aggregates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.095501 – volume: 47 start-page: 11 year: 1978 ident: 10.1016/j.carbon.2017.01.057_bib16 article-title: Point defects and self-diffusion in graphite publication-title: Phys. Status Solidi doi: 10.1002/pssa.2210470102 – volume: 76 start-page: 75419 year: 2007 ident: 10.1016/j.carbon.2017.01.057_bib19 article-title: Simulation of interstitial diffusion in graphite publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.075419 – volume: 2 start-page: 333 year: 2003 ident: 10.1016/j.carbon.2017.01.057_bib21 article-title: Wigner defects bridge the graphite gap publication-title: Nat. Mater doi: 10.1038/nmat876 – volume: 412 start-page: 321 year: 2011 ident: 10.1016/j.carbon.2017.01.057_bib4 article-title: In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite publication-title: J. Nucl. Mater doi: 10.1016/j.jnucmat.2011.03.024 – volume: 16 start-page: 189 year: 1967 ident: 10.1016/j.carbon.2017.01.057_bib14 article-title: Interstitial loops in graphite, their motion and their effect on elastic modulus publication-title: Philos. Mag. doi: 10.1080/14786436708229268 – volume: 84 start-page: 160 year: 2015 ident: 10.1016/j.carbon.2017.01.057_bib24 article-title: Investigating carbon materials nanostructure using image orientation statistics publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2014.11.048 – year: 2015 ident: 10.1016/j.carbon.2017.01.057_bib22 – year: 2013 ident: 10.1016/j.carbon.2017.01.057_bib32 article-title: Annealing studies of irradiated HOPG using X-ray measurements – volume: 48 start-page: 519 year: 1999 ident: 10.1016/j.carbon.2017.01.057_bib7 article-title: Fragmentation of graphite crystals by electron irradiation at elevated temperatures publication-title: J. Electron Microsc. (Tokyo) doi: 10.1093/oxfordjournals.jmicro.a023710 – volume: 19 start-page: 1240 year: 2010 ident: 10.1016/j.carbon.2017.01.057_bib10 article-title: Diffusion and coalescence of vacancies and interstitials in graphite: a first-principles study publication-title: Diam. Relat. Mater doi: 10.1016/j.diamond.2010.06.010 – start-page: 909 year: 2000 ident: 10.1016/j.carbon.2017.01.057_bib25 article-title: Level curve tracking algorithm for textural feature extraction – year: 2009 ident: 10.1016/j.carbon.2017.01.057_bib23 – volume: 76 start-page: 691 year: 1997 ident: 10.1016/j.carbon.2017.01.057_bib27 article-title: Damage process in electron-irradiated graphite studied by transmission electron microscopy. II. Analysis of extended energy-loss fine structure of highly oriented pyrolytic graphite publication-title: Philos. Mag. A doi: 10.1080/01418619708214030 – volume: 87 start-page: 4797 year: 2007 ident: 10.1016/j.carbon.2017.01.057_bib13 article-title: Radiation defects in graphite publication-title: Philos. Mag. doi: 10.1080/14786430701210023 – volume: 20 start-page: 395220 year: 2008 ident: 10.1016/j.carbon.2017.01.057_bib11 article-title: The di-interstitial in graphite publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/39/395220 – volume: 82 start-page: 401 year: 2002 ident: 10.1016/j.carbon.2017.01.057_bib30 article-title: Irradiation-induced amorphization of graphite: a dislocation accumulation model publication-title: Philos. Mag. Lett. doi: 10.1080/09500830210137416 – year: 1962 ident: 10.1016/j.carbon.2017.01.057_bib1 – volume: 413 start-page: 150 year: 2011 ident: 10.1016/j.carbon.2017.01.057_bib29 article-title: Buckle, ruck and tuck: a proposed new model for the response of graphite to neutron irradiation publication-title: J. Nucl. Mater doi: 10.1016/j.jnucmat.2011.04.015 – volume: 72 start-page: 1 year: 2005 ident: 10.1016/j.carbon.2017.01.057_bib9 article-title: Defect energies of graphite: density-functional calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.184109 – volume: 62 start-page: 1181 year: 1999 ident: 10.1016/j.carbon.2017.01.057_bib31 article-title: Irradiation effects in carbon nanostructures publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/62/8/201 |
SSID | ssj0004814 |
Score | 2.3372219 |
Snippet | We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and... We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and 473... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 659 |
SubjectTerms | Activation energy Annealing Diffraction patterns Electron irradiation Electron micrographs electrons Fluence Fragmentation graphene Graphite irradiation Photomicrographs Planes prediction Radiation damage Structural damage Temperature transmission electron microscopes |
Title | Thermal annealing of nuclear graphite during in-situ electron irradiation |
URI | https://dx.doi.org/10.1016/j.carbon.2017.01.057 https://www.proquest.com/docview/1917652401 https://www.proquest.com/docview/2000363477 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvQiPvFZInhdm3TTZPcoRWkVe7LgLSTZBFbKtmzbq7_dmX1UFEHwmN2EXWaSbybMzDeE3Cppg-A8jWKbDiMRGxGlg2CjVA6sTaQzLGC988tUjmfi6W341iGjthYG0yob7K8xvULr5km_kWZ_medY44vuOPgnSLkuFeKwEAr58-8-vtI8RFLze2OYH2e35XNVjpczpV0gCypXFXknGqnfzdMPoK6sz-MB2W_cRnpf_9kh6fjiiOyO2m5tx2QC-gaMnVMDwGmwxpwuAi2QrdiUtKKlBueS1lWJNC-iVb7e0LYJDs3LEkkKUEsnZPb48DoaR02bhMjFUq3BxkgmbMKUYQPHhpkJqcoU3KMU94MYzh-G8jIXWBKc58j9KWAsZMXEYyyLT0m3WBT-DAu4Yw8G3EtunUgylwafgs9ihQycZYqfk7iVjnYNhzi2spjrNlnsXdcy1ShTzbgGmZ6TaLtqWXNo_DFftYLX3_aCBpj_Y-VVqyfdnMWVxhupHILnAr9_s30N6sHQiCn8YrPCZpwY0RZKXfz745dkD0d1NuQV6a7Ljb8Gj2Vte9WW7JGd-8nzePoJQ_npfg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iB72IT6xWjeB1Memmye6xFKX10ZNCbyHJJrAi27Ld_n9n9qEoQsHrZsOGmeSbWTLfN4TcKmmD4DyNYpsOIxEbEaWDYKNUDqxNpDMsIN_5ZSYnb-JxPpxvkXHHhcGyyhb7G0yv0bp9ctda826Z58jxxXQc8hOUXJcKcHgH1algs--Mpk-T2Tc9MmkkvvGmHyd0DLq6zMuZ0i5QCJWrWr8T49TfEeoXVtcB6OGA7LeZIx01izskW744IrvjrmHbMZmCywFmP6gB7DRIM6eLQAsULDYlrZWpIb-kDTGR5kW0yqs17frg0LwsUacAHXVC3h7uX8eTqO2UELlYqgrCjGTCJkwZNnBsmJmQqkzBr5TifhDDEcTbvMwFlgTnOcp_gqUyIWsxHmNZfEq2i0Xhz5DDHXuI4V5y60SSuTT4FNIWK2TgLFO8R-LOOtq1MuLYzeJDd_Vi77qxqUabasY12LRHoq9Zy0ZGY8P7qjO8_rEdNCD9hpn9zk-6PY4rjT-lcgjJCyz_5msY3IO3I6bwi_UK-3HipbZQ6vzfH78mu5PXl2f9PJ09XZA9HGmKI_tkuyrX_hISmMpetRv0E0x17C8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+annealing+of+nuclear+graphite+during+in-situ+electron+irradiation&rft.jtitle=Carbon+%28New+York%29&rft.au=Freeman%2C+HM&rft.au=Scott%2C+AJ&rft.au=Brydson%2C+RMD&rft.date=2017-05-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=115&rft.spage=659&rft_id=info:doi/10.1016%2Fj.carbon.2017.01.057&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |